|
- Metadata-Version: 2.4
- Name: orjson
- Version: 3.11.1
- Classifier: Development Status :: 5 - Production/Stable
- Classifier: Intended Audience :: Developers
- Classifier: License :: OSI Approved :: Apache Software License
- Classifier: License :: OSI Approved :: MIT License
- Classifier: Operating System :: MacOS
- Classifier: Operating System :: Microsoft :: Windows
- Classifier: Operating System :: POSIX :: Linux
- Classifier: Programming Language :: Python :: 3
- Classifier: Programming Language :: Python :: 3.9
- Classifier: Programming Language :: Python :: 3.10
- Classifier: Programming Language :: Python :: 3.11
- Classifier: Programming Language :: Python :: 3.12
- Classifier: Programming Language :: Python :: 3.13
- Classifier: Programming Language :: Python :: 3.14
- Classifier: Programming Language :: Python :: Implementation :: CPython
- Classifier: Programming Language :: Python
- Classifier: Programming Language :: Rust
- Classifier: Typing :: Typed
- License-File: LICENSE-APACHE
- License-File: LICENSE-MIT
- Summary: Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy
- Keywords: fast,json,dataclass,dataclasses,datetime,rfc,8259,3339
- Author: ijl <ijl@mailbox.org>
- Author-email: ijl <ijl@mailbox.org>
- License: Apache-2.0 OR MIT
- Requires-Python: >=3.9
- Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
- Project-URL: source, https://github.com/ijl/orjson
- Project-URL: documentation, https://github.com/ijl/orjson
- Project-URL: changelog, https://github.com/ijl/orjson/blob/master/CHANGELOG.md
-
- # orjson
-
- orjson is a fast, correct JSON library for Python. It
- [benchmarks](https://github.com/ijl/orjson?tab=readme-ov-file#performance) as the fastest Python
- library for JSON and is more correct than the standard json library or other
- third-party libraries. It serializes
- [dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass),
- [datetime](https://github.com/ijl/orjson?tab=readme-ov-file#datetime),
- [numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy), and
- [UUID](https://github.com/ijl/orjson?tab=readme-ov-file#uuid) instances natively.
-
- [orjson.dumps()](https://github.com/ijl/orjson?tab=readme-ov-file#serialize) is
- something like 10x as fast as `json`, serializes
- common types and subtypes, has a `default` parameter for the caller to specify
- how to serialize arbitrary types, and has a number of flags controlling output.
-
- [orjson.loads()](https://github.com/ijl/orjson?tab=readme-ov-file#deserialize)
- is something like 2x as fast as `json`, and is strictly compliant with UTF-8 and
- RFC 8259 ("The JavaScript Object Notation (JSON) Data Interchange Format").
-
- Reading from and writing to files, line-delimited JSON files, and so on is
- not provided by the library.
-
- orjson supports CPython 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14.
-
- It distributes amd64/x86_64/x64, i686/x86, aarch64/arm64/armv8, arm7,
- ppc64le/POWER8, and s390x wheels for Linux, amd64 and aarch64 wheels
- for macOS, and amd64, i686, and aarch64 wheels for Windows.
-
- Wheels published to PyPI for amd64 run on x86-64-v1 (2003)
- or later, but will at runtime use AVX-512 if available for a
- significant performance benefit; aarch64 wheels run on ARMv8-A (2011) or
- later.
-
- orjson does not and will not support PyPy, embedded Python builds for
- Android/iOS, or PEP 554 subinterpreters.
-
- orjson may support PEP 703 free-threading when it is stable.
-
- Releases follow semantic versioning and serializing a new object type
- without an opt-in flag is considered a breaking change.
-
- orjson is licensed under both the Apache 2.0 and MIT licenses. The
- repository and issue tracker is
- [github.com/ijl/orjson](https://github.com/ijl/orjson), and patches may be
- submitted there. There is a
- [CHANGELOG](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- available in the repository.
-
- 1. [Usage](https://github.com/ijl/orjson?tab=readme-ov-file#usage)
- 1. [Install](https://github.com/ijl/orjson?tab=readme-ov-file#install)
- 2. [Quickstart](https://github.com/ijl/orjson?tab=readme-ov-file#quickstart)
- 3. [Migrating](https://github.com/ijl/orjson?tab=readme-ov-file#migrating)
- 4. [Serialize](https://github.com/ijl/orjson?tab=readme-ov-file#serialize)
- 1. [default](https://github.com/ijl/orjson?tab=readme-ov-file#default)
- 2. [option](https://github.com/ijl/orjson?tab=readme-ov-file#option)
- 3. [Fragment](https://github.com/ijl/orjson?tab=readme-ov-file#fragment)
- 5. [Deserialize](https://github.com/ijl/orjson?tab=readme-ov-file#deserialize)
- 2. [Types](https://github.com/ijl/orjson?tab=readme-ov-file#types)
- 1. [dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass)
- 2. [datetime](https://github.com/ijl/orjson?tab=readme-ov-file#datetime)
- 3. [enum](https://github.com/ijl/orjson?tab=readme-ov-file#enum)
- 4. [float](https://github.com/ijl/orjson?tab=readme-ov-file#float)
- 5. [int](https://github.com/ijl/orjson?tab=readme-ov-file#int)
- 6. [numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy)
- 7. [str](https://github.com/ijl/orjson?tab=readme-ov-file#str)
- 8. [uuid](https://github.com/ijl/orjson?tab=readme-ov-file#uuid)
- 3. [Testing](https://github.com/ijl/orjson?tab=readme-ov-file#testing)
- 4. [Performance](https://github.com/ijl/orjson?tab=readme-ov-file#performance)
- 1. [Latency](https://github.com/ijl/orjson?tab=readme-ov-file#latency)
- 2. [Reproducing](https://github.com/ijl/orjson?tab=readme-ov-file#reproducing)
- 5. [Questions](https://github.com/ijl/orjson?tab=readme-ov-file#questions)
- 6. [Packaging](https://github.com/ijl/orjson?tab=readme-ov-file#packaging)
- 7. [License](https://github.com/ijl/orjson?tab=readme-ov-file#license)
-
- ## Usage
-
- ### Install
-
- To install a wheel from PyPI, install the `orjson` package.
-
- In `requirements.in` or `requirements.txt` format, specify:
-
- ```txt
- orjson >= 3.10,<4
- ```
-
- In `pyproject.toml` format, specify:
-
- ```toml
- orjson = "^3.10"
- ```
-
- To build a wheel, see [packaging](https://github.com/ijl/orjson?tab=readme-ov-file#packaging).
-
- ### Quickstart
-
- This is an example of serializing, with options specified, and deserializing:
-
- ```python
- >>> import orjson, datetime, numpy
- >>> data = {
- "type": "job",
- "created_at": datetime.datetime(1970, 1, 1),
- "status": "🆗",
- "payload": numpy.array([[1, 2], [3, 4]]),
- }
- >>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
- b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
- >>> orjson.loads(_)
- {'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}
- ```
-
- ### Migrating
-
- orjson version 3 serializes more types than version 2. Subclasses of `str`,
- `int`, `dict`, and `list` are now serialized. This is faster and more similar
- to the standard library. It can be disabled with
- `orjson.OPT_PASSTHROUGH_SUBCLASS`.`dataclasses.dataclass` instances
- are now serialized by default and cannot be customized in a
- `default` function unless `option=orjson.OPT_PASSTHROUGH_DATACLASS` is
- specified. `uuid.UUID` instances are serialized by default.
- For any type that is now serialized,
- implementations in a `default` function and options enabling them can be
- removed but do not need to be. There was no change in deserialization.
-
- To migrate from the standard library, the largest difference is that
- `orjson.dumps` returns `bytes` and `json.dumps` returns a `str`.
-
- Users with `dict` objects using non-`str` keys should specify `option=orjson.OPT_NON_STR_KEYS`.
-
- `sort_keys` is replaced by `option=orjson.OPT_SORT_KEYS`.
-
- `indent` is replaced by `option=orjson.OPT_INDENT_2` and other levels of indentation are not
- supported.
-
- `ensure_ascii` is probably not relevant today and UTF-8 characters cannot be
- escaped to ASCII.
-
- ### Serialize
-
- ```python
- def dumps(
- __obj: Any,
- default: Optional[Callable[[Any], Any]] = ...,
- option: Optional[int] = ...,
- ) -> bytes: ...
- ```
-
- `dumps()` serializes Python objects to JSON.
-
- It natively serializes
- `str`, `dict`, `list`, `tuple`, `int`, `float`, `bool`, `None`,
- `dataclasses.dataclass`, `typing.TypedDict`, `datetime.datetime`,
- `datetime.date`, `datetime.time`, `uuid.UUID`, `numpy.ndarray`, and
- `orjson.Fragment` instances. It supports arbitrary types through `default`. It
- serializes subclasses of `str`, `int`, `dict`, `list`,
- `dataclasses.dataclass`, and `enum.Enum`. It does not serialize subclasses
- of `tuple` to avoid serializing `namedtuple` objects as arrays. To avoid
- serializing subclasses, specify the option `orjson.OPT_PASSTHROUGH_SUBCLASS`.
-
- The output is a `bytes` object containing UTF-8.
-
- The global interpreter lock (GIL) is held for the duration of the call.
-
- It raises `JSONEncodeError` on an unsupported type. This exception message
- describes the invalid object with the error message
- `Type is not JSON serializable: ...`. To fix this, specify
- [default](https://github.com/ijl/orjson?tab=readme-ov-file#default).
-
- It raises `JSONEncodeError` on a `str` that contains invalid UTF-8.
-
- It raises `JSONEncodeError` on an integer that exceeds 64 bits by default or,
- with `OPT_STRICT_INTEGER`, 53 bits.
-
- It raises `JSONEncodeError` if a `dict` has a key of a type other than `str`,
- unless `OPT_NON_STR_KEYS` is specified.
-
- It raises `JSONEncodeError` if the output of `default` recurses to handling by
- `default` more than 254 levels deep.
-
- It raises `JSONEncodeError` on circular references.
-
- It raises `JSONEncodeError` if a `tzinfo` on a datetime object is
- unsupported.
-
- `JSONEncodeError` is a subclass of `TypeError`. This is for compatibility
- with the standard library.
-
- If the failure was caused by an exception in `default` then
- `JSONEncodeError` chains the original exception as `__cause__`.
-
- #### default
-
- To serialize a subclass or arbitrary types, specify `default` as a
- callable that returns a supported type. `default` may be a function,
- lambda, or callable class instance. To specify that a type was not
- handled by `default`, raise an exception such as `TypeError`.
-
- ```python
- >>> import orjson, decimal
- >>>
- def default(obj):
- if isinstance(obj, decimal.Decimal):
- return str(obj)
- raise TypeError
-
- >>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
- JSONEncodeError: Type is not JSON serializable: decimal.Decimal
- >>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
- b'"0.0842389659712649442845"'
- >>> orjson.dumps({1, 2}, default=default)
- orjson.JSONEncodeError: Type is not JSON serializable: set
- ```
-
- The `default` callable may return an object that itself
- must be handled by `default` up to 254 times before an exception
- is raised.
-
- It is important that `default` raise an exception if a type cannot be handled.
- Python otherwise implicitly returns `None`, which appears to the caller
- like a legitimate value and is serialized:
-
- ```python
- >>> import orjson, json
- >>>
- def default(obj):
- if isinstance(obj, decimal.Decimal):
- return str(obj)
-
- >>> orjson.dumps({"set":{1, 2}}, default=default)
- b'{"set":null}'
- >>> json.dumps({"set":{1, 2}}, default=default)
- '{"set":null}'
- ```
-
- #### option
-
- To modify how data is serialized, specify `option`. Each `option` is an integer
- constant in `orjson`. To specify multiple options, mask them together, e.g.,
- `option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC`.
-
- ##### OPT_APPEND_NEWLINE
-
- Append `\n` to the output. This is a convenience and optimization for the
- pattern of `dumps(...) + "\n"`. `bytes` objects are immutable and this
- pattern copies the original contents.
-
- ```python
- >>> import orjson
- >>> orjson.dumps([])
- b"[]"
- >>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
- b"[]\n"
- ```
-
- ##### OPT_INDENT_2
-
- Pretty-print output with an indent of two spaces. This is equivalent to
- `indent=2` in the standard library. Pretty printing is slower and the output
- larger. orjson is the fastest compared library at pretty printing and has
- much less of a slowdown to pretty print than the standard library does. This
- option is compatible with all other options.
-
- ```python
- >>> import orjson
- >>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
- b'{"a":"b","c":{"d":true},"e":[1,2]}'
- >>> orjson.dumps(
- {"a": "b", "c": {"d": True}, "e": [1, 2]},
- option=orjson.OPT_INDENT_2
- )
- b'{\n "a": "b",\n "c": {\n "d": true\n },\n "e": [\n 1,\n 2\n ]\n}'
- ```
-
- If displayed, the indentation and linebreaks appear like this:
-
- ```json
- {
- "a": "b",
- "c": {
- "d": true
- },
- "e": [
- 1,
- 2
- ]
- }
- ```
-
- This measures serializing the github.json fixture as compact (52KiB) or
- pretty (64KiB):
-
- | Library | compact (ms) | pretty (ms) | vs. orjson |
- |-----------|----------------|---------------|--------------|
- | orjson | 0.01 | 0.02 | 1 |
- | json | 0.13 | 0.54 | 34 |
-
- This measures serializing the citm_catalog.json fixture, more of a worst
- case due to the amount of nesting and newlines, as compact (489KiB) or
- pretty (1.1MiB):
-
- | Library | compact (ms) | pretty (ms) | vs. orjson |
- |-----------|----------------|---------------|--------------|
- | orjson | 0.25 | 0.45 | 1 |
- | json | 3.01 | 24.42 | 54.4 |
-
- This can be reproduced using the `pyindent` script.
-
- ##### OPT_NAIVE_UTC
-
- Serialize `datetime.datetime` objects without a `tzinfo` as UTC. This
- has no effect on `datetime.datetime` objects that have `tzinfo` set.
-
- ```python
- >>> import orjson, datetime
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0),
- )
- b'"1970-01-01T00:00:00"'
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0),
- option=orjson.OPT_NAIVE_UTC,
- )
- b'"1970-01-01T00:00:00+00:00"'
- ```
-
- ##### OPT_NON_STR_KEYS
-
- Serialize `dict` keys of type other than `str`. This allows `dict` keys
- to be one of `str`, `int`, `float`, `bool`, `None`, `datetime.datetime`,
- `datetime.date`, `datetime.time`, `enum.Enum`, and `uuid.UUID`. For comparison,
- the standard library serializes `str`, `int`, `float`, `bool` or `None` by
- default. orjson benchmarks as being faster at serializing non-`str` keys
- than other libraries. This option is slower for `str` keys than the default.
-
- ```python
- >>> import orjson, datetime, uuid
- >>> orjson.dumps(
- {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
- option=orjson.OPT_NON_STR_KEYS,
- )
- b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
- >>> orjson.dumps(
- {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
- option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
- )
- b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'
- ```
-
- These types are generally serialized how they would be as
- values, e.g., `datetime.datetime` is still an RFC 3339 string and respects
- options affecting it. The exception is that `int` serialization does not
- respect `OPT_STRICT_INTEGER`.
-
- This option has the risk of creating duplicate keys. This is because non-`str`
- objects may serialize to the same `str` as an existing key, e.g.,
- `{"1": true, 1: false}`. The last key to be inserted to the `dict` will be
- serialized last and a JSON deserializer will presumably take the last
- occurrence of a key (in the above, `false`). The first value will be lost.
-
- This option is compatible with `orjson.OPT_SORT_KEYS`. If sorting is used,
- note the sort is unstable and will be unpredictable for duplicate keys.
-
- ```python
- >>> import orjson, datetime
- >>> orjson.dumps(
- {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
- option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
- )
- b'{"1970-01-03":3,"1970-01-05":2,"other":1}'
- ```
-
- This measures serializing 589KiB of JSON comprising a `list` of 100 `dict`
- in which each `dict` has both 365 randomly-sorted `int` keys representing epoch
- timestamps as well as one `str` key and the value for each key is a
- single integer. In "str keys", the keys were converted to `str` before
- serialization, and orjson still specifes `option=orjson.OPT_NON_STR_KEYS`
- (which is always somewhat slower).
-
- | Library | str keys (ms) | int keys (ms) | int keys sorted (ms) |
- |-----------|-----------------|-----------------|------------------------|
- | orjson | 0.5 | 0.93 | 2.08 |
- | json | 2.72 | 3.59 | |
-
- json is blank because it
- raises `TypeError` on attempting to sort before converting all keys to `str`.
- This can be reproduced using the `pynonstr` script.
-
- ##### OPT_OMIT_MICROSECONDS
-
- Do not serialize the `microsecond` field on `datetime.datetime` and
- `datetime.time` instances.
-
- ```python
- >>> import orjson, datetime
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
- )
- b'"1970-01-01T00:00:00.000001"'
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
- option=orjson.OPT_OMIT_MICROSECONDS,
- )
- b'"1970-01-01T00:00:00"'
- ```
-
- ##### OPT_PASSTHROUGH_DATACLASS
-
- Passthrough `dataclasses.dataclass` instances to `default`. This allows
- customizing their output but is much slower.
-
-
- ```python
- >>> import orjson, dataclasses
- >>>
- @dataclasses.dataclass
- class User:
- id: str
- name: str
- password: str
-
- def default(obj):
- if isinstance(obj, User):
- return {"id": obj.id, "name": obj.name}
- raise TypeError
-
- >>> orjson.dumps(User("3b1", "asd", "zxc"))
- b'{"id":"3b1","name":"asd","password":"zxc"}'
- >>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
- TypeError: Type is not JSON serializable: User
- >>> orjson.dumps(
- User("3b1", "asd", "zxc"),
- option=orjson.OPT_PASSTHROUGH_DATACLASS,
- default=default,
- )
- b'{"id":"3b1","name":"asd"}'
- ```
-
- ##### OPT_PASSTHROUGH_DATETIME
-
- Passthrough `datetime.datetime`, `datetime.date`, and `datetime.time` instances
- to `default`. This allows serializing datetimes to a custom format, e.g.,
- HTTP dates:
-
- ```python
- >>> import orjson, datetime
- >>>
- def default(obj):
- if isinstance(obj, datetime.datetime):
- return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
- raise TypeError
-
- >>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
- b'{"created_at":"1970-01-01T00:00:00"}'
- >>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
- TypeError: Type is not JSON serializable: datetime.datetime
- >>> orjson.dumps(
- {"created_at": datetime.datetime(1970, 1, 1)},
- option=orjson.OPT_PASSTHROUGH_DATETIME,
- default=default,
- )
- b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'
- ```
-
- This does not affect datetimes in `dict` keys if using OPT_NON_STR_KEYS.
-
- ##### OPT_PASSTHROUGH_SUBCLASS
-
- Passthrough subclasses of builtin types to `default`.
-
- ```python
- >>> import orjson
- >>>
- class Secret(str):
- pass
-
- def default(obj):
- if isinstance(obj, Secret):
- return "******"
- raise TypeError
-
- >>> orjson.dumps(Secret("zxc"))
- b'"zxc"'
- >>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
- TypeError: Type is not JSON serializable: Secret
- >>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
- b'"******"'
- ```
-
- This does not affect serializing subclasses as `dict` keys if using
- OPT_NON_STR_KEYS.
-
- ##### OPT_SERIALIZE_DATACLASS
-
- This is deprecated and has no effect in version 3. In version 2 this was
- required to serialize `dataclasses.dataclass` instances. For more, see
- [dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass).
-
- ##### OPT_SERIALIZE_NUMPY
-
- Serialize `numpy.ndarray` instances. For more, see
- [numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy).
-
- ##### OPT_SERIALIZE_UUID
-
- This is deprecated and has no effect in version 3. In version 2 this was
- required to serialize `uuid.UUID` instances. For more, see
- [UUID](https://github.com/ijl/orjson?tab=readme-ov-file#UUID).
-
- ##### OPT_SORT_KEYS
-
- Serialize `dict` keys in sorted order. The default is to serialize in an
- unspecified order. This is equivalent to `sort_keys=True` in the standard
- library.
-
- This can be used to ensure the order is deterministic for hashing or tests.
- It has a substantial performance penalty and is not recommended in general.
-
- ```python
- >>> import orjson
- >>> orjson.dumps({"b": 1, "c": 2, "a": 3})
- b'{"b":1,"c":2,"a":3}'
- >>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
- b'{"a":3,"b":1,"c":2}'
- ```
-
- This measures serializing the twitter.json fixture unsorted and sorted:
-
- | Library | unsorted (ms) | sorted (ms) | vs. orjson |
- |-----------|-----------------|---------------|--------------|
- | orjson | 0.11 | 0.3 | 1 |
- | json | 1.36 | 1.93 | 6.4 |
-
- The benchmark can be reproduced using the `pysort` script.
-
- The sorting is not collation/locale-aware:
-
- ```python
- >>> import orjson
- >>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
- b'{"A":3,"a":1,"\xc3\xa4":2}'
- ```
-
- This is the same sorting behavior as the standard library.
-
- `dataclass` also serialize as maps but this has no effect on them.
-
- ##### OPT_STRICT_INTEGER
-
- Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as
- the Python standard library. For more, see [int](https://github.com/ijl/orjson?tab=readme-ov-file#int).
-
- ##### OPT_UTC_Z
-
- Serialize a UTC timezone on `datetime.datetime` instances as `Z` instead
- of `+00:00`.
-
- ```python
- >>> import orjson, datetime, zoneinfo
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
- )
- b'"1970-01-01T00:00:00+00:00"'
- >>> orjson.dumps(
- datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
- option=orjson.OPT_UTC_Z
- )
- b'"1970-01-01T00:00:00Z"'
- ```
-
- #### Fragment
-
- `orjson.Fragment` includes already-serialized JSON in a document. This is an
- efficient way to include JSON blobs from a cache, JSONB field, or separately
- serialized object without first deserializing to Python objects via `loads()`.
-
- ```python
- >>> import orjson
- >>> orjson.dumps({"key": "zxc", "data": orjson.Fragment(b'{"a": "b", "c": 1}')})
- b'{"key":"zxc","data":{"a": "b", "c": 1}}'
- ```
-
- It does no reformatting: `orjson.OPT_INDENT_2` will not affect a
- compact blob nor will a pretty-printed JSON blob be rewritten as compact.
-
- The input must be `bytes` or `str` and given as a positional argument.
-
- This raises `orjson.JSONEncodeError` if a `str` is given and the input is
- not valid UTF-8. It otherwise does no validation and it is possible to
- write invalid JSON. This does not escape characters. The implementation is
- tested to not crash if given invalid strings or invalid JSON.
-
- ### Deserialize
-
- ```python
- def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...
- ```
-
- `loads()` deserializes JSON to Python objects. It deserializes to `dict`,
- `list`, `int`, `float`, `str`, `bool`, and `None` objects.
-
- `bytes`, `bytearray`, `memoryview`, and `str` input are accepted. If the input
- exists as a `memoryview`, `bytearray`, or `bytes` object, it is recommended to
- pass these directly rather than creating an unnecessary `str` object. That is,
- `orjson.loads(b"{}")` instead of `orjson.loads(b"{}".decode("utf-8"))`. This
- has lower memory usage and lower latency.
-
- The input must be valid UTF-8.
-
- orjson maintains a cache of map keys for the duration of the process. This
- causes a net reduction in memory usage by avoiding duplicate strings. The
- keys must be at most 64 bytes to be cached and 2048 entries are stored.
-
- The global interpreter lock (GIL) is held for the duration of the call.
-
- It raises `JSONDecodeError` if given an invalid type or invalid
- JSON. This includes if the input contains `NaN`, `Infinity`, or `-Infinity`,
- which the standard library allows, but is not valid JSON.
-
- It raises `JSONDecodeError` if a combination of array or object recurses
- 1024 levels deep.
-
- It raises `JSONDecodeError` if unable to allocate a buffer large enough
- to parse the document.
-
- `JSONDecodeError` is a subclass of `json.JSONDecodeError` and `ValueError`.
- This is for compatibility with the standard library.
-
- ## Types
-
- ### dataclass
-
- orjson serializes instances of `dataclasses.dataclass` natively. It serializes
- instances 40-50x as fast as other libraries and avoids a severe slowdown seen
- in other libraries compared to serializing `dict`.
-
- It is supported to pass all variants of dataclasses, including dataclasses
- using `__slots__`, frozen dataclasses, those with optional or default
- attributes, and subclasses. There is a performance benefit to not
- using `__slots__`.
-
- | Library | dict (ms) | dataclass (ms) | vs. orjson |
- |-----------|-------------|------------------|--------------|
- | orjson | 0.43 | 0.95 | 1 |
- | json | 5.81 | 38.32 | 40 |
-
- This measures serializing 555KiB of JSON, orjson natively and other libraries
- using `default` to serialize the output of `dataclasses.asdict()`. This can be
- reproduced using the `pydataclass` script.
-
- Dataclasses are serialized as maps, with every attribute serialized and in
- the order given on class definition:
-
- ```python
- >>> import dataclasses, orjson, typing
-
- @dataclasses.dataclass
- class Member:
- id: int
- active: bool = dataclasses.field(default=False)
-
- @dataclasses.dataclass
- class Object:
- id: int
- name: str
- members: typing.List[Member]
-
- >>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
- b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'
- ```
-
- ### datetime
-
- orjson serializes `datetime.datetime` objects to
- [RFC 3339](https://tools.ietf.org/html/rfc3339) format,
- e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is
- compatible with `isoformat()` in the standard library.
-
- ```python
- >>> import orjson, datetime, zoneinfo
- >>> orjson.dumps(
- datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
- )
- b'"2018-12-01T02:03:04.000009+10:30"'
- >>> orjson.dumps(
- datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
- )
- b'"2100-09-01T21:55:02+00:00"'
- >>> orjson.dumps(
- datetime.datetime(2100, 9, 1, 21, 55, 2)
- )
- b'"2100-09-01T21:55:02"'
- ```
-
- `datetime.datetime` supports instances with a `tzinfo` that is `None`,
- `datetime.timezone.utc`, a timezone instance from the python3.9+ `zoneinfo`
- module, or a timezone instance from the third-party `pendulum`, `pytz`, or
- `dateutil`/`arrow` libraries.
-
- It is fastest to use the standard library's `zoneinfo.ZoneInfo` for timezones.
-
- `datetime.time` objects must not have a `tzinfo`.
-
- ```python
- >>> import orjson, datetime
- >>> orjson.dumps(datetime.time(12, 0, 15, 290))
- b'"12:00:15.000290"'
- ```
-
- `datetime.date` objects will always serialize.
-
- ```python
- >>> import orjson, datetime
- >>> orjson.dumps(datetime.date(1900, 1, 2))
- b'"1900-01-02"'
- ```
-
- Errors with `tzinfo` result in `JSONEncodeError` being raised.
-
- To disable serialization of `datetime` objects specify the option
- `orjson.OPT_PASSTHROUGH_DATETIME`.
-
- To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option
- `orjson.OPT_UTC_Z`.
-
- To assume datetimes without timezone are UTC, use the option `orjson.OPT_NAIVE_UTC`.
-
- ### enum
-
- orjson serializes enums natively. Options apply to their values.
-
- ```python
- >>> import enum, datetime, orjson
- >>>
- class DatetimeEnum(enum.Enum):
- EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
- >>> orjson.dumps(DatetimeEnum.EPOCH)
- b'"1970-01-01T00:00:00"'
- >>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
- b'"1970-01-01T00:00:00+00:00"'
- ```
-
- Enums with members that are not supported types can be serialized using
- `default`:
-
- ```python
- >>> import enum, orjson
- >>>
- class Custom:
- def __init__(self, val):
- self.val = val
-
- def default(obj):
- if isinstance(obj, Custom):
- return obj.val
- raise TypeError
-
- class CustomEnum(enum.Enum):
- ONE = Custom(1)
-
- >>> orjson.dumps(CustomEnum.ONE, default=default)
- b'1'
- ```
-
- ### float
-
- orjson serializes and deserializes double precision floats with no loss of
- precision and consistent rounding.
-
- `orjson.dumps()` serializes Nan, Infinity, and -Infinity, which are not
- compliant JSON, as `null`:
-
- ```python
- >>> import orjson, json
- >>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
- b'[null,null,null]'
- >>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
- '[NaN, Infinity, -Infinity]'
- ```
-
- ### int
-
- orjson serializes and deserializes 64-bit integers by default. The range
- supported is a signed 64-bit integer's minimum (-9223372036854775807) to
- an unsigned 64-bit integer's maximum (18446744073709551615). This
- is widely compatible, but there are implementations
- that only support 53-bits for integers, e.g.,
- web browsers. For those implementations, `dumps()` can be configured to
- raise a `JSONEncodeError` on values exceeding the 53-bit range.
-
- ```python
- >>> import orjson
- >>> orjson.dumps(9007199254740992)
- b'9007199254740992'
- >>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
- JSONEncodeError: Integer exceeds 53-bit range
- >>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
- JSONEncodeError: Integer exceeds 53-bit range
- ```
-
- ### numpy
-
- orjson natively serializes `numpy.ndarray` and individual
- `numpy.float64`, `numpy.float32`, `numpy.float16` (`numpy.half`),
- `numpy.int64`, `numpy.int32`, `numpy.int16`, `numpy.int8`,
- `numpy.uint64`, `numpy.uint32`, `numpy.uint16`, `numpy.uint8`,
- `numpy.uintp`, `numpy.intp`, `numpy.datetime64`, and `numpy.bool`
- instances.
-
- orjson is compatible with both numpy v1 and v2.
-
- orjson is faster than all compared libraries at serializing
- numpy instances. Serializing numpy data requires specifying
- `option=orjson.OPT_SERIALIZE_NUMPY`.
-
- ```python
- >>> import orjson, numpy
- >>> orjson.dumps(
- numpy.array([[1, 2, 3], [4, 5, 6]]),
- option=orjson.OPT_SERIALIZE_NUMPY,
- )
- b'[[1,2,3],[4,5,6]]'
- ```
-
- The array must be a contiguous C array (`C_CONTIGUOUS`) and one of the
- supported datatypes.
-
- Note a difference between serializing `numpy.float32` using `ndarray.tolist()`
- or `orjson.dumps(..., option=orjson.OPT_SERIALIZE_NUMPY)`: `tolist()` converts
- to a `double` before serializing and orjson's native path does not. This
- can result in different rounding.
-
- `numpy.datetime64` instances are serialized as RFC 3339 strings and
- datetime options affect them.
-
- ```python
- >>> import orjson, numpy
- >>> orjson.dumps(
- numpy.datetime64("2021-01-01T00:00:00.172"),
- option=orjson.OPT_SERIALIZE_NUMPY,
- )
- b'"2021-01-01T00:00:00.172000"'
- >>> orjson.dumps(
- numpy.datetime64("2021-01-01T00:00:00.172"),
- option=(
- orjson.OPT_SERIALIZE_NUMPY |
- orjson.OPT_NAIVE_UTC |
- orjson.OPT_OMIT_MICROSECONDS
- ),
- )
- b'"2021-01-01T00:00:00+00:00"'
- ```
-
- If an array is not a contiguous C array, contains an unsupported datatype,
- or contains a `numpy.datetime64` using an unsupported representation
- (e.g., picoseconds), orjson falls through to `default`. In `default`,
- `obj.tolist()` can be specified.
-
- If an array is not in the native endianness, e.g., an array of big-endian values
- on a little-endian system, `orjson.JSONEncodeError` is raised.
-
- If an array is malformed, `orjson.JSONEncodeError` is raised.
-
- This measures serializing 92MiB of JSON from an `numpy.ndarray` with
- dimensions of `(50000, 100)` and `numpy.float64` values:
-
- | Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
- |-----------|----------------|------------------|--------------|
- | orjson | 105 | 105 | 1 |
- | json | 1,481 | 295 | 14.2 |
-
- This measures serializing 100MiB of JSON from an `numpy.ndarray` with
- dimensions of `(100000, 100)` and `numpy.int32` values:
-
- | Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
- |-----------|----------------|------------------|--------------|
- | orjson | 68 | 119 | 1 |
- | json | 684 | 501 | 10.1 |
-
- This measures serializing 105MiB of JSON from an `numpy.ndarray` with
- dimensions of `(100000, 200)` and `numpy.bool` values:
-
- | Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
- |-----------|----------------|------------------|--------------|
- | orjson | 50 | 125 | 1 |
- | json | 573 | 398 | 11.5 |
-
- In these benchmarks, orjson serializes natively and `json` serializes
- `ndarray.tolist()` via `default`. The RSS column measures peak memory
- usage during serialization. This can be reproduced using the `pynumpy` script.
-
- orjson does not have an installation or compilation dependency on numpy. The
- implementation is independent, reading `numpy.ndarray` using
- `PyArrayInterface`.
-
- ### str
-
- orjson is strict about UTF-8 conformance. This is stricter than the standard
- library's json module, which will serialize and deserialize UTF-16 surrogates,
- e.g., "\ud800", that are invalid UTF-8.
-
- If `orjson.dumps()` is given a `str` that does not contain valid UTF-8,
- `orjson.JSONEncodeError` is raised. If `loads()` receives invalid UTF-8,
- `orjson.JSONDecodeError` is raised.
-
- ```python
- >>> import orjson, json
- >>> orjson.dumps('\ud800')
- JSONEncodeError: str is not valid UTF-8: surrogates not allowed
- >>> json.dumps('\ud800')
- '"\\ud800"'
- >>> orjson.loads('"\\ud800"')
- JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
- >>> json.loads('"\\ud800"')
- '\ud800'
- ```
-
- To make a best effort at deserializing bad input, first decode `bytes` using
- the `replace` or `lossy` argument for `errors`:
-
- ```python
- >>> import orjson
- >>> orjson.loads(b'"\xed\xa0\x80"')
- JSONDecodeError: str is not valid UTF-8: surrogates not allowed
- >>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
- '���'
- ```
-
- ### uuid
-
- orjson serializes `uuid.UUID` instances to
- [RFC 4122](https://tools.ietf.org/html/rfc4122) format, e.g.,
- "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".
-
- ``` python
- >>> import orjson, uuid
- >>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
- b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'
- ```
-
- ## Testing
-
- The library has comprehensive tests. There are tests against fixtures in the
- [JSONTestSuite](https://github.com/nst/JSONTestSuite) and
- [nativejson-benchmark](https://github.com/miloyip/nativejson-benchmark)
- repositories. It is tested to not crash against the
- [Big List of Naughty Strings](https://github.com/minimaxir/big-list-of-naughty-strings).
- It is tested to not leak memory. It is tested to not crash
- against and not accept invalid UTF-8. There are integration tests
- exercising the library's use in web servers (gunicorn using multiprocess/forked
- workers) and when
- multithreaded. It also uses some tests from the ultrajson library.
-
- orjson is the most correct of the compared libraries. This graph shows how each
- library handles a combined 342 JSON fixtures from the
- [JSONTestSuite](https://github.com/nst/JSONTestSuite) and
- [nativejson-benchmark](https://github.com/miloyip/nativejson-benchmark) tests:
-
- | Library | Invalid JSON documents not rejected | Valid JSON documents not deserialized |
- |------------|---------------------------------------|-----------------------------------------|
- | orjson | 0 | 0 |
- | json | 17 | 0 |
-
- This shows that all libraries deserialize valid JSON but only orjson
- correctly rejects the given invalid JSON fixtures. Errors are largely due to
- accepting invalid strings and numbers.
-
- The graph above can be reproduced using the `pycorrectness` script.
-
- ## Performance
-
- Serialization and deserialization performance of orjson is consistently better
- than the standard library's `json`. The graphs below illustrate a few commonly
- used documents.
-
- ### Latency
-
- 
-
- 
-
- #### twitter.json serialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 0.1 | 8453 | 1 |
- | json | 1.3 | 765 | 11.1 |
-
- #### twitter.json deserialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 0.5 | 1889 | 1 |
- | json | 2.2 | 453 | 4.2 |
-
- #### github.json serialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 0.01 | 103693 | 1 |
- | json | 0.13 | 7648 | 13.6 |
-
- #### github.json deserialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 0.04 | 23264 | 1 |
- | json | 0.1 | 10430 | 2.2 |
-
- #### citm_catalog.json serialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 0.3 | 3975 | 1 |
- | json | 3 | 338 | 11.8 |
-
- #### citm_catalog.json deserialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 1.3 | 781 | 1 |
- | json | 4 | 250 | 3.1 |
-
- #### canada.json serialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 2.5 | 399 | 1 |
- | json | 29.8 | 33 | 11.9 |
-
- #### canada.json deserialization
-
- | Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
- |-----------|---------------------------------|-------------------------|----------------------|
- | orjson | 3 | 333 | 1 |
- | json | 18 | 55 | 6 |
-
- ### Reproducing
-
- The above was measured using Python 3.11.10 in a Fedora 42 container on an
- x86-64-v4 machine using the
- `orjson-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl`
- artifact on PyPI. The latency results can be reproduced using the `pybench` script.
-
- ## Questions
-
- ### Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?
-
- No. This requires a schema specifying what types are expected and how to
- handle errors etc. This is addressed by data validation libraries a
- level above this.
-
- ### Will it serialize to `str`?
-
- No. `bytes` is the correct type for a serialized blob.
-
- ### Will it support NDJSON or JSONL?
-
- No. [orjsonl](https://github.com/umarbutler/orjsonl) may be appropriate.
-
- ### Will it support JSON5 or RJSON?
-
- No, it supports RFC 8259.
-
- ### How do I depend on orjson in a Rust project?
-
- orjson is only shipped as a Python module. The project should depend on
- `orjson` in its own Python requirements and should obtain pointers to
- functions and objects using the normal `PyImport_*` APIs.
-
- ## Packaging
-
- To package orjson requires at least [Rust](https://www.rust-lang.org/) 1.82
- and the [maturin](https://github.com/PyO3/maturin) build tool. The recommended
- build command is:
-
- ```sh
- maturin build --release --strip
- ```
-
- It benefits from also having a C build environment to compile a faster
- deserialization backend. See this project's `manylinux_2_28` builds for an
- example using clang and LTO.
-
- The project's own CI tests against `nightly-2025-04-15` and stable 1.82. It
- is prudent to pin the nightly version because that channel can introduce
- breaking changes. There is a significant performance benefit to using
- nightly.
-
- orjson is tested on native hardware for amd64, aarch64, and i686 on Linux and
- for arm7, ppc64le, and s390x is cross-compiled and may be tested via
- emulation. It is tested for either aarch64 or amd64 on macOS and
- cross-compiles for the other, depending on version. For Windows it is
- tested on amd64 and i686.
-
- There are no runtime dependencies other than libc.
-
- The source distribution on PyPI contains all dependencies' source and can be
- built without network access. The file can be downloaded from
- `https://files.pythonhosted.org/packages/source/o/orjson/orjson-${version}.tar.gz`.
-
- orjson's tests are included in the source distribution on PyPI. The tests
- require only `pytest`. There are optional packages such as `pytz` and `numpy`
- listed in `test/requirements.txt` and used in ~10% of tests. Not having these
- dependencies causes the tests needing them to skip. Tests can be run
- with `pytest -q test`.
-
- ## License
-
- orjson was written by ijl <<ijl@mailbox.org>>, copyright 2018 - 2025, available
- to you under either the Apache 2 license or MIT license at your choice.
|