|
- Metadata-Version: 2.1
- Name: ecdsa
- Version: 0.19.1
- Summary: ECDSA cryptographic signature library (pure python)
- Home-page: http://github.com/tlsfuzzer/python-ecdsa
- Author: Brian Warner
- Author-email: warner@lothar.com
- License: MIT
- Classifier: Programming Language :: Python
- Classifier: Programming Language :: Python :: 2
- Classifier: Programming Language :: Python :: 2.6
- Classifier: Programming Language :: Python :: 2.7
- Classifier: Programming Language :: Python :: 3
- Classifier: Programming Language :: Python :: 3.6
- Classifier: Programming Language :: Python :: 3.7
- Classifier: Programming Language :: Python :: 3.8
- Classifier: Programming Language :: Python :: 3.9
- Classifier: Programming Language :: Python :: 3.10
- Classifier: Programming Language :: Python :: 3.11
- Classifier: Programming Language :: Python :: 3.12
- Classifier: Programming Language :: Python :: 3.13
- Requires-Python: >=2.6, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*
- Description-Content-Type: text/markdown
- License-File: LICENSE
- Requires-Dist: six >=1.9.0
- Provides-Extra: gmpy
- Requires-Dist: gmpy ; extra == 'gmpy'
- Provides-Extra: gmpy2
- Requires-Dist: gmpy2 ; extra == 'gmpy2'
-
- # Pure-Python ECDSA and ECDH
-
- [](https://github.com/tlsfuzzer/python-ecdsa/actions/workflows/ci.yml)
- [](https://ecdsa.readthedocs.io/en/latest/?badge=latest)
- [](https://coveralls.io/github/tlsfuzzer/python-ecdsa?branch=master)
- 
- 
- [](https://github.com/tlsfuzzer/python-ecdsa/actions/workflows/codeql.yml)
- [](https://pypi.python.org/pypi/ecdsa/)
- 
-
-
- This is an easy-to-use implementation of ECC (Elliptic Curve Cryptography)
- with support for ECDSA (Elliptic Curve Digital Signature Algorithm),
- EdDSA (Edwards-curve Digital Signature Algorithm) and ECDH
- (Elliptic Curve Diffie-Hellman), implemented purely in Python, released under
- the MIT license. With this library, you can quickly create key pairs (signing
- key and verifying key), sign messages, and verify the signatures. You can
- also agree on a shared secret key based on exchanged public keys.
- The keys and signatures are very short, making them easy to handle and
- incorporate into other protocols.
-
- **NOTE: This library should not be used in production settings, see [Security](#Security) for more details.**
-
- ## Features
-
- This library provides key generation, signing, verifying, and shared secret
- derivation for five
- popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192,
- 224, 256, 384, and 521 bits. The "short names" for these curves, as known by
- the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`,
- `secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the
- 256-bit curve `secp256k1` used by Bitcoin. There is also support for the
- regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The
- "short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`,
- `brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`,
- `brainpoolP512r1`. Few of the small curves from SEC standard are also
- included (mainly to speed-up testing of the library), those are:
- `secp112r1`, `secp112r2`, `secp128r1`, and `secp160r1`.
- Key generation, siging and verifying is also supported for Ed25519 and
- Ed448 curves.
- No other curves are included, but it is not too hard to add support for more
- curves over prime fields.
-
- ## Dependencies
-
- This library uses only Python and the 'six' package. It is compatible with
- Python 2.6, 2.7, and 3.6+. It also supports execution on alternative
- implementations like pypy and pypy3.
-
- If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic.
- Either of them can be installed after this library is installed,
- `python-ecdsa` will detect their presence on start-up and use them
- automatically.
- You should prefer `gmpy2` on Python3 for optimal performance.
-
- To run the OpenSSL compatibility tests, the 'openssl' tool must be in your
- `PATH`. This release has been tested successfully against OpenSSL 0.9.8o,
- 1.0.0a, 1.0.2f, 1.1.1d and 3.0.1 (among others).
-
-
- ## Installation
-
- This library is available on PyPI, it's recommended to install it using `pip`:
-
- ```
- pip install ecdsa
- ```
-
- In case higher performance is wanted and using native code is not a problem,
- it's possible to specify installation together with `gmpy2`:
-
- ```
- pip install ecdsa[gmpy2]
- ```
-
- or (slower, legacy option):
- ```
- pip install ecdsa[gmpy]
- ```
-
- ## Speed
-
- The following table shows how long this library takes to generate key pairs
- (`keygen`), to sign data (`sign`), to verify those signatures (`verify`),
- to derive a shared secret (`ecdh`), and
- to verify the signatures with no key-specific precomputation (`no PC verify`).
- All those values are in seconds.
- For convenience, the inverses of those values are also provided:
- how many keys per second can be generated (`keygen/s`), how many signatures
- can be made per second (`sign/s`), how many signatures can be verified
- per second (`verify/s`), how many shared secrets can be derived per second
- (`ecdh/s`), and how many signatures with no key specific
- precomputation can be verified per second (`no PC verify/s`). The size of raw
- signature (generally the smallest
- the way a signature can be encoded) is also provided in the `siglen` column.
- Use `tox -e speed` to generate this table on your own computer.
- On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance:
-
- ```
- siglen keygen keygen/s sign sign/s verify verify/s no PC verify no PC verify/s
- NIST192p: 48 0.00032s 3134.06 0.00033s 2985.53 0.00063s 1598.36 0.00129s 774.43
- NIST224p: 56 0.00040s 2469.24 0.00042s 2367.88 0.00081s 1233.41 0.00170s 586.66
- NIST256p: 64 0.00051s 1952.73 0.00054s 1867.80 0.00098s 1021.86 0.00212s 471.27
- NIST384p: 96 0.00107s 935.92 0.00111s 904.23 0.00203s 491.77 0.00446s 224.00
- NIST521p: 132 0.00210s 475.52 0.00215s 464.16 0.00398s 251.28 0.00874s 114.39
- SECP256k1: 64 0.00052s 1921.54 0.00054s 1847.49 0.00105s 948.68 0.00210s 477.01
- BRAINPOOLP160r1: 40 0.00025s 4003.88 0.00026s 3845.12 0.00053s 1893.93 0.00105s 949.92
- BRAINPOOLP192r1: 48 0.00033s 3043.97 0.00034s 2975.98 0.00063s 1581.50 0.00135s 742.29
- BRAINPOOLP224r1: 56 0.00041s 2436.44 0.00043s 2315.51 0.00078s 1278.49 0.00180s 556.16
- BRAINPOOLP256r1: 64 0.00053s 1892.49 0.00054s 1846.24 0.00114s 875.64 0.00229s 437.25
- BRAINPOOLP320r1: 80 0.00073s 1361.26 0.00076s 1309.25 0.00143s 699.29 0.00322s 310.49
- BRAINPOOLP384r1: 96 0.00107s 931.29 0.00111s 901.80 0.00230s 434.19 0.00476s 210.20
- BRAINPOOLP512r1: 128 0.00207s 483.41 0.00212s 471.42 0.00425s 235.43 0.00912s 109.61
- SECP112r1: 28 0.00015s 6672.53 0.00016s 6440.34 0.00031s 3265.41 0.00056s 1774.20
- SECP112r2: 28 0.00015s 6697.11 0.00015s 6479.98 0.00028s 3524.72 0.00058s 1716.16
- SECP128r1: 32 0.00018s 5497.65 0.00019s 5272.89 0.00036s 2747.39 0.00072s 1396.16
- SECP160r1: 42 0.00025s 3949.32 0.00026s 3894.45 0.00046s 2153.85 0.00102s 985.07
- Ed25519: 64 0.00076s 1324.48 0.00042s 2405.01 0.00109s 918.05 0.00344s 290.50
- Ed448: 114 0.00176s 569.53 0.00115s 870.94 0.00282s 355.04 0.01024s 97.69
-
- ecdh ecdh/s
- NIST192p: 0.00104s 964.89
- NIST224p: 0.00134s 748.63
- NIST256p: 0.00170s 587.08
- NIST384p: 0.00352s 283.90
- NIST521p: 0.00717s 139.51
- SECP256k1: 0.00154s 648.40
- BRAINPOOLP160r1: 0.00082s 1220.70
- BRAINPOOLP192r1: 0.00105s 956.75
- BRAINPOOLP224r1: 0.00136s 734.52
- BRAINPOOLP256r1: 0.00178s 563.32
- BRAINPOOLP320r1: 0.00252s 397.23
- BRAINPOOLP384r1: 0.00376s 266.27
- BRAINPOOLP512r1: 0.00733s 136.35
- SECP112r1: 0.00046s 2180.40
- SECP112r2: 0.00045s 2229.14
- SECP128r1: 0.00054s 1868.15
- SECP160r1: 0.00080s 1243.98
- ```
-
- To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`.
- On the same machine I'm getting the following performance with `gmpy2`:
- ```
- siglen keygen keygen/s sign sign/s verify verify/s no PC verify no PC verify/s
- NIST192p: 48 0.00017s 5933.40 0.00017s 5751.70 0.00032s 3125.28 0.00067s 1502.41
- NIST224p: 56 0.00021s 4782.87 0.00022s 4610.05 0.00040s 2487.04 0.00089s 1126.90
- NIST256p: 64 0.00023s 4263.98 0.00024s 4125.16 0.00045s 2200.88 0.00098s 1016.82
- NIST384p: 96 0.00041s 2449.54 0.00042s 2399.96 0.00083s 1210.57 0.00172s 581.43
- NIST521p: 132 0.00071s 1416.07 0.00072s 1389.81 0.00144s 692.93 0.00312s 320.40
- SECP256k1: 64 0.00024s 4245.05 0.00024s 4122.09 0.00045s 2206.40 0.00094s 1068.32
- BRAINPOOLP160r1: 40 0.00014s 6939.17 0.00015s 6681.55 0.00029s 3452.43 0.00057s 1769.81
- BRAINPOOLP192r1: 48 0.00017s 5920.05 0.00017s 5774.36 0.00034s 2979.00 0.00069s 1453.19
- BRAINPOOLP224r1: 56 0.00021s 4732.12 0.00022s 4622.65 0.00041s 2422.47 0.00087s 1149.87
- BRAINPOOLP256r1: 64 0.00024s 4233.02 0.00024s 4115.20 0.00047s 2143.27 0.00098s 1015.60
- BRAINPOOLP320r1: 80 0.00032s 3162.38 0.00032s 3077.62 0.00063s 1598.83 0.00136s 737.34
- BRAINPOOLP384r1: 96 0.00041s 2436.88 0.00042s 2395.62 0.00083s 1202.68 0.00178s 562.85
- BRAINPOOLP512r1: 128 0.00063s 1587.60 0.00064s 1558.83 0.00125s 799.96 0.00281s 355.83
- SECP112r1: 28 0.00009s 11118.66 0.00009s 10775.48 0.00018s 5456.00 0.00033s 3020.83
- SECP112r2: 28 0.00009s 11322.97 0.00009s 10857.71 0.00017s 5748.77 0.00032s 3094.28
- SECP128r1: 32 0.00010s 10078.39 0.00010s 9665.27 0.00019s 5200.58 0.00036s 2760.88
- SECP160r1: 42 0.00015s 6875.51 0.00015s 6647.35 0.00029s 3422.41 0.00057s 1768.35
- Ed25519: 64 0.00030s 3322.56 0.00018s 5568.63 0.00046s 2165.35 0.00153s 654.02
- Ed448: 114 0.00060s 1680.53 0.00039s 2567.40 0.00096s 1036.67 0.00350s 285.62
-
- ecdh ecdh/s
- NIST192p: 0.00050s 1985.70
- NIST224p: 0.00066s 1524.16
- NIST256p: 0.00071s 1413.07
- NIST384p: 0.00127s 788.89
- NIST521p: 0.00230s 434.85
- SECP256k1: 0.00071s 1409.95
- BRAINPOOLP160r1: 0.00042s 2374.65
- BRAINPOOLP192r1: 0.00051s 1960.01
- BRAINPOOLP224r1: 0.00066s 1518.37
- BRAINPOOLP256r1: 0.00071s 1399.90
- BRAINPOOLP320r1: 0.00100s 997.21
- BRAINPOOLP384r1: 0.00129s 777.51
- BRAINPOOLP512r1: 0.00210s 475.99
- SECP112r1: 0.00022s 4457.70
- SECP112r2: 0.00024s 4252.33
- SECP128r1: 0.00028s 3589.31
- SECP160r1: 0.00043s 2305.02
- ```
-
- (there's also `gmpy` version, execute it using `tox -e speedgmpy`)
-
- For comparison, a highly optimised implementation (including curve-specific
- assembly for some curves), like the one in OpenSSL 1.1.1d, provides the
- following performance numbers on the same machine.
- Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it:
- ```
- sign verify sign/s verify/s
- 192 bits ecdsa (nistp192) 0.0002s 0.0002s 4785.6 5380.7
- 224 bits ecdsa (nistp224) 0.0000s 0.0001s 22475.6 9822.0
- 256 bits ecdsa (nistp256) 0.0000s 0.0001s 45069.6 14166.6
- 384 bits ecdsa (nistp384) 0.0008s 0.0006s 1265.6 1648.1
- 521 bits ecdsa (nistp521) 0.0003s 0.0005s 3753.1 1819.5
- 256 bits ecdsa (brainpoolP256r1) 0.0003s 0.0003s 2983.5 3333.2
- 384 bits ecdsa (brainpoolP384r1) 0.0008s 0.0007s 1258.8 1528.1
- 512 bits ecdsa (brainpoolP512r1) 0.0015s 0.0012s 675.1 860.1
-
- sign verify sign/s verify/s
- 253 bits EdDSA (Ed25519) 0.0000s 0.0001s 28217.9 10897.7
- 456 bits EdDSA (Ed448) 0.0003s 0.0005s 3926.5 2147.7
-
- op op/s
- 192 bits ecdh (nistp192) 0.0002s 4853.4
- 224 bits ecdh (nistp224) 0.0001s 15252.1
- 256 bits ecdh (nistp256) 0.0001s 18436.3
- 384 bits ecdh (nistp384) 0.0008s 1292.7
- 521 bits ecdh (nistp521) 0.0003s 2884.7
- 256 bits ecdh (brainpoolP256r1) 0.0003s 3066.5
- 384 bits ecdh (brainpoolP384r1) 0.0008s 1298.0
- 512 bits ecdh (brainpoolP512r1) 0.0014s 694.8
- ```
-
- Keys and signature can be serialized in different ways (see Usage, below).
- For a NIST192p key, the three basic representations require strings of the
- following lengths (in bytes):
-
- to_string: signkey= 24, verifykey= 48, signature=48
- compressed: signkey=n/a, verifykey= 25, signature=n/a
- DER: signkey=106, verifykey= 80, signature=55
- PEM: signkey=278, verifykey=162, (no support for PEM signatures)
-
- ## History
-
- In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a
- [message to sci.crypt][1], available from his [download site][2]. In 2010,
- Brian Warner wrote a wrapper around this code, to make it a bit easier and
- safer to use. In 2020, Hubert Kario included an implementation of elliptic
- curve cryptography that uses Jacobian coordinates internally, improving
- performance about 20-fold. You are looking at the README for this wrapper.
-
- [1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html
- [2]: http://webpages.charter.net/curryfans/peter/downloads.html
-
- ## Testing
-
- To run the full test suite, do this:
-
- tox -e coverage
-
- On an Intel Core i7 4790K @ 4.0GHz, the tests take about 18 seconds to execute.
- The test suite uses
- [`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some
- inherent variability in the test suite execution time.
-
- One part of `test_pyecdsa.py` and `test_ecdh.py` checks compatibility with
- OpenSSL, by running the "openssl" CLI tool, make sure it's in your `PATH` if
- you want to test compatibility with it (if OpenSSL is missing, too old, or
- doesn't support all the curves supported in upstream releases you will see
- skipped tests in the above `coverage` run).
-
- ## Security
-
- This library was not designed with security in mind. If you are processing
- data that needs to be protected we suggest you use a quality wrapper around
- OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such
- a wrapper. The primary use-case of this library is as a portable library for
- interoperability testing and as a teaching tool.
-
- **This library does not protect against side-channel attacks.**
-
- Do not allow attackers to measure how long it takes you to generate a key pair
- or sign a message. Do not allow attackers to run code on the same physical
- machine when key pair generation or signing is taking place (this includes
- virtual machines). Do not allow attackers to measure how much power your
- computer uses while generating the key pair or signing a message. Do not allow
- attackers to measure RF interference coming from your computer while generating
- a key pair or signing a message. Note: just loading the private key will cause
- key pair generation. Other operations or attack vectors may also be
- vulnerable to attacks. **For a sophisticated attacker observing just one
- operation with a private key will be sufficient to completely
- reconstruct the private key**.
-
- Please also note that any Pure-python cryptographic library will be vulnerable
- to the same side-channel attacks. This is because Python does not provide
- side-channel secure primitives (with the exception of
- [`hmac.compare_digest()`][3]), making side-channel secure programming
- impossible.
-
- This library depends upon a strong source of random numbers. Do not use it on
- a system where `os.urandom()` does not provide cryptographically secure
- random numbers.
-
- [3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest
-
- ## Usage
-
- You start by creating a `SigningKey`. You can use this to sign data, by passing
- in data as a byte string and getting back the signature (also a byte string).
- You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`.
- The `VerifyingKey` can be used to verify a signature, by passing it both the
- data string and the signature byte string: it either returns True or raises
- `BadSignatureError`.
-
- ```python
- from ecdsa import SigningKey
- sk = SigningKey.generate() # uses NIST192p
- vk = sk.verifying_key
- signature = sk.sign(b"message")
- assert vk.verify(signature, b"message")
- ```
-
- Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like
- NIST192p (the default one). Longer curves are more secure, but take longer to
- use, and result in longer keys and signatures.
-
- ```python
- from ecdsa import SigningKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- vk = sk.verifying_key
- signature = sk.sign(b"message")
- assert vk.verify(signature, b"message")
- ```
-
- The `SigningKey` can be serialized into several different formats: the shortest
- is to call `s=sk.to_string()`, and then re-create it with
- `SigningKey.from_string(s, curve)` . This short form does not record the
- curve, so you must be sure to pass to `from_string()` the same curve you used
- for the original key. The short form of a NIST192p-based signing key is just 24
- bytes long. If a point encoding is invalid or it does not lie on the specified
- curve, `from_string()` will raise `MalformedPointError`.
-
- ```python
- from ecdsa import SigningKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- sk_string = sk.to_string()
- sk2 = SigningKey.from_string(sk_string, curve=NIST384p)
- print(sk_string.hex())
- print(sk2.to_string().hex())
- ```
-
- Note: while the methods are called `to_string()` the type they return is
- actually `bytes`, the "string" part is leftover from Python 2.
-
- `sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same
- formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored
- `"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format
- is a shorter binary form of the same data.
- `SigningKey.from_pem()/.from_der()` will undo this serialization. These
- formats include the curve name, so you do not need to pass in a curve
- identifier to the deserializer. In case the file is malformed `from_der()`
- and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`.
-
- ```python
- from ecdsa import SigningKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- sk_pem = sk.to_pem()
- sk2 = SigningKey.from_pem(sk_pem)
- # sk and sk2 are the same key
- ```
-
- Likewise, the `VerifyingKey` can be serialized in the same way:
- `vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and
- `to_der()/from_der()`. The same `curve=` argument is needed for
- `VerifyingKey.from_string()`.
-
- ```python
- from ecdsa import SigningKey, VerifyingKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- vk = sk.verifying_key
- vk_string = vk.to_string()
- vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)
- # vk and vk2 are the same key
-
- from ecdsa import SigningKey, VerifyingKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- vk = sk.verifying_key
- vk_pem = vk.to_pem()
- vk2 = VerifyingKey.from_pem(vk_pem)
- # vk and vk2 are the same key
- ```
-
- There are a couple of different ways to compute a signature. Fundamentally,
- ECDSA takes a number that represents the data being signed, and returns a
- pair of numbers that represent the signature. The `hashfunc=` argument to
- `sk.sign()` and `vk.verify()` is used to turn an arbitrary string into a
- fixed-length digest, which is then turned into a number that ECDSA can sign,
- and both sign and verify must use the same approach. The default value is
- `hashlib.sha1`, but if you use NIST256p or a longer curve, you can use
- `hashlib.sha256` instead.
-
- There are also multiple ways to represent a signature. The default
- `sk.sign()` and `vk.verify()` methods present it as a short string, for
- simplicity and minimal overhead. To use a different scheme, use the
- `sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper
- functions in the `ecdsa.util` module that can be useful here.
-
- It is also possible to create a `SigningKey` from a "seed", which is
- deterministic. This can be used in protocols where you want to derive
- consistent signing keys from some other secret, for example when you want
- three separate keys and only want to store a single master secret. You should
- start with a uniformly-distributed unguessable seed with about `curve.baselen`
- bytes of entropy, and then use one of the helper functions in `ecdsa.util` to
- convert it into an integer in the correct range, and then finally pass it
- into `SigningKey.from_secret_exponent()`, like this:
-
- ```python
- import os
- from ecdsa import NIST384p, SigningKey
- from ecdsa.util import randrange_from_seed__trytryagain
-
- def make_key(seed):
- secexp = randrange_from_seed__trytryagain(seed, NIST384p.order)
- return SigningKey.from_secret_exponent(secexp, curve=NIST384p)
-
- seed = os.urandom(NIST384p.baselen) # or other starting point
- sk1a = make_key(seed)
- sk1b = make_key(seed)
- # note: sk1a and sk1b are the same key
- assert sk1a.to_string() == sk1b.to_string()
- sk2 = make_key(b"2-"+seed) # different key
- assert sk1a.to_string() != sk2.to_string()
- ```
-
- In case the application will verify a lot of signatures made with a single
- key, it's possible to precompute some of the internal values to make
- signature verification significantly faster. The break-even point occurs at
- about 100 signatures verified.
-
- To perform precomputation, you can call the `precompute()` method
- on `VerifyingKey` instance:
- ```python
- from ecdsa import SigningKey, NIST384p
- sk = SigningKey.generate(curve=NIST384p)
- vk = sk.verifying_key
- vk.precompute()
- signature = sk.sign(b"message")
- assert vk.verify(signature, b"message")
- ```
-
- Once `precompute()` was called, all signature verifications with this key will
- be faster to execute.
-
- ## OpenSSL Compatibility
-
- To produce signatures that can be verified by OpenSSL tools, or to verify
- signatures that were produced by those tools, use:
-
- ```python
- # openssl ecparam -name prime256v1 -genkey -out sk.pem
- # openssl ec -in sk.pem -pubout -out vk.pem
- # echo "data for signing" > data
- # openssl dgst -sha256 -sign sk.pem -out data.sig data
- # openssl dgst -sha256 -verify vk.pem -signature data.sig data
- # openssl dgst -sha256 -prverify sk.pem -signature data.sig data
-
- import hashlib
- from ecdsa import SigningKey, VerifyingKey
- from ecdsa.util import sigencode_der, sigdecode_der
-
- with open("vk.pem") as f:
- vk = VerifyingKey.from_pem(f.read())
-
- with open("data", "rb") as f:
- data = f.read()
-
- with open("data.sig", "rb") as f:
- signature = f.read()
-
- assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)
-
- with open("sk.pem") as f:
- sk = SigningKey.from_pem(f.read(), hashlib.sha256)
-
- new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)
-
- with open("data.sig2", "wb") as f:
- f.write(new_signature)
-
- # openssl dgst -sha256 -verify vk.pem -signature data.sig2 data
- ```
-
- Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the
- `sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for
- respectively writing and reading the signatures.
-
- The keys also can be written in format that openssl can handle:
-
- ```python
- from ecdsa import SigningKey, VerifyingKey
-
- with open("sk.pem") as f:
- sk = SigningKey.from_pem(f.read())
- with open("sk.pem", "wb") as f:
- f.write(sk.to_pem())
-
- with open("vk.pem") as f:
- vk = VerifyingKey.from_pem(f.read())
- with open("vk.pem", "wb") as f:
- f.write(vk.to_pem())
- ```
-
- ## Entropy
-
- Creating a signing key with `SigningKey.generate()` requires some form of
- entropy (as opposed to
- `from_secret_exponent`/`from_string`/`from_der`/`from_pem`,
- which are deterministic and do not require an entropy source). The default
- source is `os.urandom()`, but you can pass any other function that behaves
- like `os.urandom` as the `entropy=` argument to do something different. This
- may be useful in unit tests, where you want to achieve repeatable results. The
- `ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong
- pseudo-random stream from it:
-
- ```python
- from ecdsa.util import PRNG
- from ecdsa import SigningKey
- rng1 = PRNG(b"seed")
- sk1 = SigningKey.generate(entropy=rng1)
- rng2 = PRNG(b"seed")
- sk2 = SigningKey.generate(entropy=rng2)
- # sk1 and sk2 are the same key
- ```
-
- Likewise, ECDSA signature generation requires a random number, and each
- signature must use a different one (using the same number twice will
- immediately reveal the private signing key). The `sk.sign()` method takes an
- `entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`.
-
- ## Deterministic Signatures
-
- If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`,
- the code will generate a deterministic signature instead of a random one.
- This uses the algorithm from RFC6979 to safely generate a unique `k` value,
- derived from the private key and the message being signed. Each time you sign
- the same message with the same key, you will get the same signature (using
- the same `k`).
-
- This may become the default in a future version, as it is not vulnerable to
- failures of the entropy source.
-
- ## Examples
-
- Create a NIST192p key pair and immediately save both to disk:
-
- ```python
- from ecdsa import SigningKey
- sk = SigningKey.generate()
- vk = sk.verifying_key
- with open("private.pem", "wb") as f:
- f.write(sk.to_pem())
- with open("public.pem", "wb") as f:
- f.write(vk.to_pem())
- ```
-
- Load a signing key from disk, use it to sign a message (using SHA-1), and write
- the signature to disk:
-
- ```python
- from ecdsa import SigningKey
- with open("private.pem") as f:
- sk = SigningKey.from_pem(f.read())
- with open("message", "rb") as f:
- message = f.read()
- sig = sk.sign(message)
- with open("signature", "wb") as f:
- f.write(sig)
- ```
-
- Load the verifying key, message, and signature from disk, and verify the
- signature (assume SHA-1 hash):
-
- ```python
- from ecdsa import VerifyingKey, BadSignatureError
- vk = VerifyingKey.from_pem(open("public.pem").read())
- with open("message", "rb") as f:
- message = f.read()
- with open("signature", "rb") as f:
- sig = f.read()
- try:
- vk.verify(sig, message)
- print "good signature"
- except BadSignatureError:
- print "BAD SIGNATURE"
- ```
-
- Create a NIST521p key pair:
-
- ```python
- from ecdsa import SigningKey, NIST521p
- sk = SigningKey.generate(curve=NIST521p)
- vk = sk.verifying_key
- ```
-
- Create three independent signing keys from a master seed:
-
- ```python
- from ecdsa import NIST192p, SigningKey
- from ecdsa.util import randrange_from_seed__trytryagain
-
- def make_key_from_seed(seed, curve=NIST192p):
- secexp = randrange_from_seed__trytryagain(seed, curve.order)
- return SigningKey.from_secret_exponent(secexp, curve)
-
- sk1 = make_key_from_seed("1:%s" % seed)
- sk2 = make_key_from_seed("2:%s" % seed)
- sk3 = make_key_from_seed("3:%s" % seed)
- ```
-
- Load a verifying key from disk and print it using hex encoding in
- uncompressed and compressed format (defined in X9.62 and SEC1 standards):
-
- ```python
- from ecdsa import VerifyingKey
-
- with open("public.pem") as f:
- vk = VerifyingKey.from_pem(f.read())
-
- print("uncompressed: {0}".format(vk.to_string("uncompressed").hex()))
- print("compressed: {0}".format(vk.to_string("compressed").hex()))
- ```
-
- Load a verifying key from a hex string from compressed format, output
- uncompressed:
-
- ```python
- from ecdsa import VerifyingKey, NIST256p
-
- comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759'
- vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p)
- print(vk.to_string("uncompressed").hex())
- ```
-
- ECDH key exchange with remote party:
-
- ```python
- from ecdsa import ECDH, NIST256p
-
- ecdh = ECDH(curve=NIST256p)
- ecdh.generate_private_key()
- local_public_key = ecdh.get_public_key()
- #send `local_public_key` to remote party and receive `remote_public_key` from remote party
- with open("remote_public_key.pem") as e:
- remote_public_key = e.read()
- ecdh.load_received_public_key_pem(remote_public_key)
- secret = ecdh.generate_sharedsecret_bytes()
- ```
|