|
- import sys
- from configparser import ConfigParser
- from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union
-
- from mypy.errorcodes import ErrorCode
- from mypy.nodes import (
- ARG_NAMED,
- ARG_NAMED_OPT,
- ARG_OPT,
- ARG_POS,
- ARG_STAR2,
- MDEF,
- Argument,
- AssignmentStmt,
- Block,
- CallExpr,
- ClassDef,
- Context,
- Decorator,
- EllipsisExpr,
- FuncBase,
- FuncDef,
- JsonDict,
- MemberExpr,
- NameExpr,
- PassStmt,
- PlaceholderNode,
- RefExpr,
- StrExpr,
- SymbolNode,
- SymbolTableNode,
- TempNode,
- TypeInfo,
- TypeVarExpr,
- Var,
- )
- from mypy.options import Options
- from mypy.plugin import (
- CheckerPluginInterface,
- ClassDefContext,
- FunctionContext,
- MethodContext,
- Plugin,
- ReportConfigContext,
- SemanticAnalyzerPluginInterface,
- )
- from mypy.plugins import dataclasses
- from mypy.semanal import set_callable_name # type: ignore
- from mypy.server.trigger import make_wildcard_trigger
- from mypy.types import (
- AnyType,
- CallableType,
- Instance,
- NoneType,
- Overloaded,
- ProperType,
- Type,
- TypeOfAny,
- TypeType,
- TypeVarId,
- TypeVarType,
- UnionType,
- get_proper_type,
- )
- from mypy.typevars import fill_typevars
- from mypy.util import get_unique_redefinition_name
- from mypy.version import __version__ as mypy_version
-
- from pydantic.v1.utils import is_valid_field
-
- try:
- from mypy.types import TypeVarDef # type: ignore[attr-defined]
- except ImportError: # pragma: no cover
- # Backward-compatible with TypeVarDef from Mypy 0.910.
- from mypy.types import TypeVarType as TypeVarDef
-
- CONFIGFILE_KEY = 'pydantic-mypy'
- METADATA_KEY = 'pydantic-mypy-metadata'
- _NAMESPACE = __name__[:-5] # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X
- BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel'
- BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings'
- MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass'
- FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field'
- DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass'
-
-
- def parse_mypy_version(version: str) -> Tuple[int, ...]:
- return tuple(map(int, version.partition('+')[0].split('.')))
-
-
- MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version)
- BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__'
-
- # Increment version if plugin changes and mypy caches should be invalidated
- __version__ = 2
-
-
- def plugin(version: str) -> 'TypingType[Plugin]':
- """
- `version` is the mypy version string
-
- We might want to use this to print a warning if the mypy version being used is
- newer, or especially older, than we expect (or need).
- """
- return PydanticPlugin
-
-
- class PydanticPlugin(Plugin):
- def __init__(self, options: Options) -> None:
- self.plugin_config = PydanticPluginConfig(options)
- self._plugin_data = self.plugin_config.to_data()
- super().__init__(options)
-
- def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]':
- sym = self.lookup_fully_qualified(fullname)
- if sym and isinstance(sym.node, TypeInfo): # pragma: no branch
- # No branching may occur if the mypy cache has not been cleared
- if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro):
- return self._pydantic_model_class_maker_callback
- return None
-
- def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
- if fullname == MODEL_METACLASS_FULLNAME:
- return self._pydantic_model_metaclass_marker_callback
- return None
-
- def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]':
- sym = self.lookup_fully_qualified(fullname)
- if sym and sym.fullname == FIELD_FULLNAME:
- return self._pydantic_field_callback
- return None
-
- def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]:
- if fullname.endswith('.from_orm'):
- return from_orm_callback
- return None
-
- def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
- """Mark pydantic.dataclasses as dataclass.
-
- Mypy version 1.1.1 added support for `@dataclass_transform` decorator.
- """
- if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1):
- return dataclasses.dataclass_class_maker_callback # type: ignore[return-value]
- return None
-
- def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]:
- """Return all plugin config data.
-
- Used by mypy to determine if cache needs to be discarded.
- """
- return self._plugin_data
-
- def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None:
- transformer = PydanticModelTransformer(ctx, self.plugin_config)
- transformer.transform()
-
- def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None:
- """Reset dataclass_transform_spec attribute of ModelMetaclass.
-
- Let the plugin handle it. This behavior can be disabled
- if 'debug_dataclass_transform' is set to True', for testing purposes.
- """
- if self.plugin_config.debug_dataclass_transform:
- return
- info_metaclass = ctx.cls.info.declared_metaclass
- assert info_metaclass, "callback not passed from 'get_metaclass_hook'"
- if getattr(info_metaclass.type, 'dataclass_transform_spec', None):
- info_metaclass.type.dataclass_transform_spec = None # type: ignore[attr-defined]
-
- def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type':
- """
- Extract the type of the `default` argument from the Field function, and use it as the return type.
-
- In particular:
- * Check whether the default and default_factory argument is specified.
- * Output an error if both are specified.
- * Retrieve the type of the argument which is specified, and use it as return type for the function.
- """
- default_any_type = ctx.default_return_type
-
- assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()'
- assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()'
- default_args = ctx.args[0]
- default_factory_args = ctx.args[1]
-
- if default_args and default_factory_args:
- error_default_and_default_factory_specified(ctx.api, ctx.context)
- return default_any_type
-
- if default_args:
- default_type = ctx.arg_types[0][0]
- default_arg = default_args[0]
-
- # Fallback to default Any type if the field is required
- if not isinstance(default_arg, EllipsisExpr):
- return default_type
-
- elif default_factory_args:
- default_factory_type = ctx.arg_types[1][0]
-
- # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter
- # Pydantic calls the default factory without any argument, so we retrieve the first item
- if isinstance(default_factory_type, Overloaded):
- if MYPY_VERSION_TUPLE > (0, 910):
- default_factory_type = default_factory_type.items[0]
- else:
- # Mypy0.910 exposes the items of overloaded types in a function
- default_factory_type = default_factory_type.items()[0] # type: ignore[operator]
-
- if isinstance(default_factory_type, CallableType):
- ret_type = default_factory_type.ret_type
- # mypy doesn't think `ret_type` has `args`, you'd think mypy should know,
- # add this check in case it varies by version
- args = getattr(ret_type, 'args', None)
- if args:
- if all(isinstance(arg, TypeVarType) for arg in args):
- # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any`
- ret_type.args = tuple(default_any_type for _ in args) # type: ignore[attr-defined]
- return ret_type
-
- return default_any_type
-
-
- class PydanticPluginConfig:
- __slots__ = (
- 'init_forbid_extra',
- 'init_typed',
- 'warn_required_dynamic_aliases',
- 'warn_untyped_fields',
- 'debug_dataclass_transform',
- )
- init_forbid_extra: bool
- init_typed: bool
- warn_required_dynamic_aliases: bool
- warn_untyped_fields: bool
- debug_dataclass_transform: bool # undocumented
-
- def __init__(self, options: Options) -> None:
- if options.config_file is None: # pragma: no cover
- return
-
- toml_config = parse_toml(options.config_file)
- if toml_config is not None:
- config = toml_config.get('tool', {}).get('pydantic-mypy', {})
- for key in self.__slots__:
- setting = config.get(key, False)
- if not isinstance(setting, bool):
- raise ValueError(f'Configuration value must be a boolean for key: {key}')
- setattr(self, key, setting)
- else:
- plugin_config = ConfigParser()
- plugin_config.read(options.config_file)
- for key in self.__slots__:
- setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False)
- setattr(self, key, setting)
-
- def to_data(self) -> Dict[str, Any]:
- return {key: getattr(self, key) for key in self.__slots__}
-
-
- def from_orm_callback(ctx: MethodContext) -> Type:
- """
- Raise an error if orm_mode is not enabled
- """
- model_type: Instance
- ctx_type = ctx.type
- if isinstance(ctx_type, TypeType):
- ctx_type = ctx_type.item
- if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance):
- model_type = ctx_type.ret_type # called on the class
- elif isinstance(ctx_type, Instance):
- model_type = ctx_type # called on an instance (unusual, but still valid)
- else: # pragma: no cover
- detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})'
- error_unexpected_behavior(detail, ctx.api, ctx.context)
- return ctx.default_return_type
- pydantic_metadata = model_type.type.metadata.get(METADATA_KEY)
- if pydantic_metadata is None:
- return ctx.default_return_type
- orm_mode = pydantic_metadata.get('config', {}).get('orm_mode')
- if orm_mode is not True:
- error_from_orm(get_name(model_type.type), ctx.api, ctx.context)
- return ctx.default_return_type
-
-
- class PydanticModelTransformer:
- tracked_config_fields: Set[str] = {
- 'extra',
- 'allow_mutation',
- 'frozen',
- 'orm_mode',
- 'allow_population_by_field_name',
- 'alias_generator',
- }
-
- def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None:
- self._ctx = ctx
- self.plugin_config = plugin_config
-
- def transform(self) -> None:
- """
- Configures the BaseModel subclass according to the plugin settings.
-
- In particular:
- * determines the model config and fields,
- * adds a fields-aware signature for the initializer and construct methods
- * freezes the class if allow_mutation = False or frozen = True
- * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses
- """
- ctx = self._ctx
- info = ctx.cls.info
-
- self.adjust_validator_signatures()
- config = self.collect_config()
- fields = self.collect_fields(config)
- is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1])
- self.add_initializer(fields, config, is_settings)
- self.add_construct_method(fields)
- self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True)
- info.metadata[METADATA_KEY] = {
- 'fields': {field.name: field.serialize() for field in fields},
- 'config': config.set_values_dict(),
- }
-
- def adjust_validator_signatures(self) -> None:
- """When we decorate a function `f` with `pydantic.validator(...), mypy sees
- `f` as a regular method taking a `self` instance, even though pydantic
- internally wraps `f` with `classmethod` if necessary.
-
- Teach mypy this by marking any function whose outermost decorator is a
- `validator()` call as a classmethod.
- """
- for name, sym in self._ctx.cls.info.names.items():
- if isinstance(sym.node, Decorator):
- first_dec = sym.node.original_decorators[0]
- if (
- isinstance(first_dec, CallExpr)
- and isinstance(first_dec.callee, NameExpr)
- and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator'
- ):
- sym.node.func.is_class = True
-
- def collect_config(self) -> 'ModelConfigData':
- """
- Collects the values of the config attributes that are used by the plugin, accounting for parent classes.
- """
- ctx = self._ctx
- cls = ctx.cls
- config = ModelConfigData()
- for stmt in cls.defs.body:
- if not isinstance(stmt, ClassDef):
- continue
- if stmt.name == 'Config':
- for substmt in stmt.defs.body:
- if not isinstance(substmt, AssignmentStmt):
- continue
- config.update(self.get_config_update(substmt))
- if (
- config.has_alias_generator
- and not config.allow_population_by_field_name
- and self.plugin_config.warn_required_dynamic_aliases
- ):
- error_required_dynamic_aliases(ctx.api, stmt)
- for info in cls.info.mro[1:]: # 0 is the current class
- if METADATA_KEY not in info.metadata:
- continue
-
- # Each class depends on the set of fields in its ancestors
- ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))
- for name, value in info.metadata[METADATA_KEY]['config'].items():
- config.setdefault(name, value)
- return config
-
- def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']:
- """
- Collects the fields for the model, accounting for parent classes
- """
- # First, collect fields belonging to the current class.
- ctx = self._ctx
- cls = self._ctx.cls
- fields = [] # type: List[PydanticModelField]
- known_fields = set() # type: Set[str]
- for stmt in cls.defs.body:
- if not isinstance(stmt, AssignmentStmt): # `and stmt.new_syntax` to require annotation
- continue
-
- lhs = stmt.lvalues[0]
- if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name):
- continue
-
- if not stmt.new_syntax and self.plugin_config.warn_untyped_fields:
- error_untyped_fields(ctx.api, stmt)
-
- # if lhs.name == '__config__': # BaseConfig not well handled; I'm not sure why yet
- # continue
-
- sym = cls.info.names.get(lhs.name)
- if sym is None: # pragma: no cover
- # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation)
- # This is the same logic used in the dataclasses plugin
- continue
-
- node = sym.node
- if isinstance(node, PlaceholderNode): # pragma: no cover
- # See the PlaceholderNode docstring for more detail about how this can occur
- # Basically, it is an edge case when dealing with complex import logic
- # This is the same logic used in the dataclasses plugin
- continue
- if not isinstance(node, Var): # pragma: no cover
- # Don't know if this edge case still happens with the `is_valid_field` check above
- # but better safe than sorry
- continue
-
- # x: ClassVar[int] is ignored by dataclasses.
- if node.is_classvar:
- continue
-
- is_required = self.get_is_required(cls, stmt, lhs)
- alias, has_dynamic_alias = self.get_alias_info(stmt)
- if (
- has_dynamic_alias
- and not model_config.allow_population_by_field_name
- and self.plugin_config.warn_required_dynamic_aliases
- ):
- error_required_dynamic_aliases(ctx.api, stmt)
- fields.append(
- PydanticModelField(
- name=lhs.name,
- is_required=is_required,
- alias=alias,
- has_dynamic_alias=has_dynamic_alias,
- line=stmt.line,
- column=stmt.column,
- )
- )
- known_fields.add(lhs.name)
- all_fields = fields.copy()
- for info in cls.info.mro[1:]: # 0 is the current class, -2 is BaseModel, -1 is object
- if METADATA_KEY not in info.metadata:
- continue
-
- superclass_fields = []
- # Each class depends on the set of fields in its ancestors
- ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))
-
- for name, data in info.metadata[METADATA_KEY]['fields'].items():
- if name not in known_fields:
- field = PydanticModelField.deserialize(info, data)
- known_fields.add(name)
- superclass_fields.append(field)
- else:
- (field,) = (a for a in all_fields if a.name == name)
- all_fields.remove(field)
- superclass_fields.append(field)
- all_fields = superclass_fields + all_fields
- return all_fields
-
- def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None:
- """
- Adds a fields-aware `__init__` method to the class.
-
- The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings.
- """
- ctx = self._ctx
- typed = self.plugin_config.init_typed
- use_alias = config.allow_population_by_field_name is not True
- force_all_optional = is_settings or bool(
- config.has_alias_generator and not config.allow_population_by_field_name
- )
- init_arguments = self.get_field_arguments(
- fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias
- )
- if not self.should_init_forbid_extra(fields, config):
- var = Var('kwargs')
- init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2))
-
- if '__init__' not in ctx.cls.info.names:
- add_method(ctx, '__init__', init_arguments, NoneType())
-
- def add_construct_method(self, fields: List['PydanticModelField']) -> None:
- """
- Adds a fully typed `construct` classmethod to the class.
-
- Similar to the fields-aware __init__ method, but always uses the field names (not aliases),
- and does not treat settings fields as optional.
- """
- ctx = self._ctx
- set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')])
- optional_set_str = UnionType([set_str, NoneType()])
- fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT)
- construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False)
- construct_arguments = [fields_set_argument] + construct_arguments
-
- obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object')
- self_tvar_name = '_PydanticBaseModel' # Make sure it does not conflict with other names in the class
- tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name
- if MYPY_VERSION_TUPLE >= (1, 4):
- tvd = TypeVarType(
- self_tvar_name,
- tvar_fullname,
- (
- TypeVarId(-1, namespace=ctx.cls.fullname + '.construct')
- if MYPY_VERSION_TUPLE >= (1, 11)
- else TypeVarId(-1)
- ),
- [],
- obj_type,
- AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type]
- )
- self_tvar_expr = TypeVarExpr(
- self_tvar_name,
- tvar_fullname,
- [],
- obj_type,
- AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type]
- )
- else:
- tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type)
- self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type)
- ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr)
-
- # Backward-compatible with TypeVarDef from Mypy 0.910.
- if isinstance(tvd, TypeVarType):
- self_type = tvd
- else:
- self_type = TypeVarType(tvd)
-
- add_method(
- ctx,
- 'construct',
- construct_arguments,
- return_type=self_type,
- self_type=self_type,
- tvar_def=tvd,
- is_classmethod=True,
- )
-
- def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None:
- """
- Marks all fields as properties so that attempts to set them trigger mypy errors.
-
- This is the same approach used by the attrs and dataclasses plugins.
- """
- ctx = self._ctx
- info = ctx.cls.info
- for field in fields:
- sym_node = info.names.get(field.name)
- if sym_node is not None:
- var = sym_node.node
- if isinstance(var, Var):
- var.is_property = frozen
- elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration:
- # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage
- ctx.api.defer()
- else: # pragma: no cover
- # I don't know whether it's possible to hit this branch, but I've added it for safety
- try:
- var_str = str(var)
- except TypeError:
- # This happens for PlaceholderNode; perhaps it will happen for other types in the future..
- var_str = repr(var)
- detail = f'sym_node.node: {var_str} (of type {var.__class__})'
- error_unexpected_behavior(detail, ctx.api, ctx.cls)
- else:
- var = field.to_var(info, use_alias=False)
- var.info = info
- var.is_property = frozen
- var._fullname = get_fullname(info) + '.' + get_name(var)
- info.names[get_name(var)] = SymbolTableNode(MDEF, var)
-
- def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']:
- """
- Determines the config update due to a single statement in the Config class definition.
-
- Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int)
- """
- lhs = substmt.lvalues[0]
- if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields):
- return None
- if lhs.name == 'extra':
- if isinstance(substmt.rvalue, StrExpr):
- forbid_extra = substmt.rvalue.value == 'forbid'
- elif isinstance(substmt.rvalue, MemberExpr):
- forbid_extra = substmt.rvalue.name == 'forbid'
- else:
- error_invalid_config_value(lhs.name, self._ctx.api, substmt)
- return None
- return ModelConfigData(forbid_extra=forbid_extra)
- if lhs.name == 'alias_generator':
- has_alias_generator = True
- if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None':
- has_alias_generator = False
- return ModelConfigData(has_alias_generator=has_alias_generator)
- if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'):
- return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'})
- error_invalid_config_value(lhs.name, self._ctx.api, substmt)
- return None
-
- @staticmethod
- def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool:
- """
- Returns a boolean indicating whether the field defined in `stmt` is a required field.
- """
- expr = stmt.rvalue
- if isinstance(expr, TempNode):
- # TempNode means annotation-only, so only non-required if Optional
- value_type = get_proper_type(cls.info[lhs.name].type)
- return not PydanticModelTransformer.type_has_implicit_default(value_type)
- if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME:
- # The "default value" is a call to `Field`; at this point, the field is
- # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory
- # is specified.
- for arg, name in zip(expr.args, expr.arg_names):
- # If name is None, then this arg is the default because it is the only positional argument.
- if name is None or name == 'default':
- return arg.__class__ is EllipsisExpr
- if name == 'default_factory':
- return False
- # In this case, default and default_factory are not specified, so we need to look at the annotation
- value_type = get_proper_type(cls.info[lhs.name].type)
- return not PydanticModelTransformer.type_has_implicit_default(value_type)
- # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`)
- return isinstance(expr, EllipsisExpr)
-
- @staticmethod
- def type_has_implicit_default(type_: Optional[ProperType]) -> bool:
- """
- Returns True if the passed type will be given an implicit default value.
-
- In pydantic v1, this is the case for Optional types and Any (with default value None).
- """
- if isinstance(type_, AnyType):
- # Annotated as Any
- return True
- if isinstance(type_, UnionType) and any(
- isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items
- ):
- # Annotated as Optional, or otherwise having NoneType or AnyType in the union
- return True
- return False
-
- @staticmethod
- def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]:
- """
- Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`.
-
- `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal.
- If `has_dynamic_alias` is True, `alias` will be None.
- """
- expr = stmt.rvalue
- if isinstance(expr, TempNode):
- # TempNode means annotation-only
- return None, False
-
- if not (
- isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME
- ):
- # Assigned value is not a call to pydantic.fields.Field
- return None, False
-
- for i, arg_name in enumerate(expr.arg_names):
- if arg_name != 'alias':
- continue
- arg = expr.args[i]
- if isinstance(arg, StrExpr):
- return arg.value, False
- else:
- return None, True
- return None, False
-
- def get_field_arguments(
- self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool
- ) -> List[Argument]:
- """
- Helper function used during the construction of the `__init__` and `construct` method signatures.
-
- Returns a list of mypy Argument instances for use in the generated signatures.
- """
- info = self._ctx.cls.info
- arguments = [
- field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias)
- for field in fields
- if not (use_alias and field.has_dynamic_alias)
- ]
- return arguments
-
- def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool:
- """
- Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature
-
- We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to,
- *unless* a required dynamic alias is present (since then we can't determine a valid signature).
- """
- if not config.allow_population_by_field_name:
- if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)):
- return False
- if config.forbid_extra:
- return True
- return self.plugin_config.init_forbid_extra
-
- @staticmethod
- def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool:
- """
- Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be
- determined during static analysis.
- """
- for field in fields:
- if field.has_dynamic_alias:
- return True
- if has_alias_generator:
- for field in fields:
- if field.alias is None:
- return True
- return False
-
-
- class PydanticModelField:
- def __init__(
- self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int
- ):
- self.name = name
- self.is_required = is_required
- self.alias = alias
- self.has_dynamic_alias = has_dynamic_alias
- self.line = line
- self.column = column
-
- def to_var(self, info: TypeInfo, use_alias: bool) -> Var:
- name = self.name
- if use_alias and self.alias is not None:
- name = self.alias
- return Var(name, info[self.name].type)
-
- def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument:
- if typed and info[self.name].type is not None:
- type_annotation = info[self.name].type
- else:
- type_annotation = AnyType(TypeOfAny.explicit)
- return Argument(
- variable=self.to_var(info, use_alias),
- type_annotation=type_annotation,
- initializer=None,
- kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED,
- )
-
- def serialize(self) -> JsonDict:
- return self.__dict__
-
- @classmethod
- def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField':
- return cls(**data)
-
-
- class ModelConfigData:
- def __init__(
- self,
- forbid_extra: Optional[bool] = None,
- allow_mutation: Optional[bool] = None,
- frozen: Optional[bool] = None,
- orm_mode: Optional[bool] = None,
- allow_population_by_field_name: Optional[bool] = None,
- has_alias_generator: Optional[bool] = None,
- ):
- self.forbid_extra = forbid_extra
- self.allow_mutation = allow_mutation
- self.frozen = frozen
- self.orm_mode = orm_mode
- self.allow_population_by_field_name = allow_population_by_field_name
- self.has_alias_generator = has_alias_generator
-
- def set_values_dict(self) -> Dict[str, Any]:
- return {k: v for k, v in self.__dict__.items() if v is not None}
-
- def update(self, config: Optional['ModelConfigData']) -> None:
- if config is None:
- return
- for k, v in config.set_values_dict().items():
- setattr(self, k, v)
-
- def setdefault(self, key: str, value: Any) -> None:
- if getattr(self, key) is None:
- setattr(self, key, value)
-
-
- ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic')
- ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic')
- ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic')
- ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic')
- ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic')
- ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic')
-
-
- def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None:
- api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM)
-
-
- def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None:
- api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG)
-
-
- def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
- api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS)
-
-
- def error_unexpected_behavior(
- detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context
- ) -> None: # pragma: no cover
- # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path
- link = 'https://github.com/pydantic/pydantic/issues/new/choose'
- full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n'
- full_message += f'Please consider reporting this bug at {link} so we can try to fix it!'
- api.fail(full_message, context, code=ERROR_UNEXPECTED)
-
-
- def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
- api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED)
-
-
- def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None:
- api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS)
-
-
- def add_method(
- ctx: ClassDefContext,
- name: str,
- args: List[Argument],
- return_type: Type,
- self_type: Optional[Type] = None,
- tvar_def: Optional[TypeVarDef] = None,
- is_classmethod: bool = False,
- is_new: bool = False,
- # is_staticmethod: bool = False,
- ) -> None:
- """
- Adds a new method to a class.
-
- This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged
- """
- info = ctx.cls.info
-
- # First remove any previously generated methods with the same name
- # to avoid clashes and problems in the semantic analyzer.
- if name in info.names:
- sym = info.names[name]
- if sym.plugin_generated and isinstance(sym.node, FuncDef):
- ctx.cls.defs.body.remove(sym.node) # pragma: no cover
-
- self_type = self_type or fill_typevars(info)
- if is_classmethod or is_new:
- first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)]
- # elif is_staticmethod:
- # first = []
- else:
- self_type = self_type or fill_typevars(info)
- first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)]
- args = first + args
- arg_types, arg_names, arg_kinds = [], [], []
- for arg in args:
- assert arg.type_annotation, 'All arguments must be fully typed.'
- arg_types.append(arg.type_annotation)
- arg_names.append(get_name(arg.variable))
- arg_kinds.append(arg.kind)
-
- function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function')
- signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type)
- if tvar_def:
- signature.variables = [tvar_def]
-
- func = FuncDef(name, args, Block([PassStmt()]))
- func.info = info
- func.type = set_callable_name(signature, func)
- func.is_class = is_classmethod
- # func.is_static = is_staticmethod
- func._fullname = get_fullname(info) + '.' + name
- func.line = info.line
-
- # NOTE: we would like the plugin generated node to dominate, but we still
- # need to keep any existing definitions so they get semantically analyzed.
- if name in info.names:
- # Get a nice unique name instead.
- r_name = get_unique_redefinition_name(name, info.names)
- info.names[r_name] = info.names[name]
-
- if is_classmethod: # or is_staticmethod:
- func.is_decorated = True
- v = Var(name, func.type)
- v.info = info
- v._fullname = func._fullname
- # if is_classmethod:
- v.is_classmethod = True
- dec = Decorator(func, [NameExpr('classmethod')], v)
- # else:
- # v.is_staticmethod = True
- # dec = Decorator(func, [NameExpr('staticmethod')], v)
-
- dec.line = info.line
- sym = SymbolTableNode(MDEF, dec)
- else:
- sym = SymbolTableNode(MDEF, func)
- sym.plugin_generated = True
-
- info.names[name] = sym
- info.defn.defs.body.append(func)
-
-
- def get_fullname(x: Union[FuncBase, SymbolNode]) -> str:
- """
- Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
- """
- fn = x.fullname
- if callable(fn): # pragma: no cover
- return fn()
- return fn
-
-
- def get_name(x: Union[FuncBase, SymbolNode]) -> str:
- """
- Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
- """
- fn = x.name
- if callable(fn): # pragma: no cover
- return fn()
- return fn
-
-
- def parse_toml(config_file: str) -> Optional[Dict[str, Any]]:
- if not config_file.endswith('.toml'):
- return None
-
- read_mode = 'rb'
- if sys.version_info >= (3, 11):
- import tomllib as toml_
- else:
- try:
- import tomli as toml_
- except ImportError:
- # older versions of mypy have toml as a dependency, not tomli
- read_mode = 'r'
- try:
- import toml as toml_ # type: ignore[no-redef]
- except ImportError: # pragma: no cover
- import warnings
-
- warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.')
- return None
-
- with open(config_file, read_mode) as rf:
- return toml_.load(rf) # type: ignore[arg-type]
|