|
- import warnings
- from abc import ABCMeta
- from copy import deepcopy
- from enum import Enum
- from functools import partial
- from pathlib import Path
- from types import FunctionType, prepare_class, resolve_bases
- from typing import (
- TYPE_CHECKING,
- AbstractSet,
- Any,
- Callable,
- ClassVar,
- Dict,
- List,
- Mapping,
- Optional,
- Tuple,
- Type,
- TypeVar,
- Union,
- cast,
- no_type_check,
- overload,
- )
-
- from typing_extensions import dataclass_transform
-
- from pydantic.v1.class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators
- from pydantic.v1.config import BaseConfig, Extra, inherit_config, prepare_config
- from pydantic.v1.error_wrappers import ErrorWrapper, ValidationError
- from pydantic.v1.errors import ConfigError, DictError, ExtraError, MissingError
- from pydantic.v1.fields import (
- MAPPING_LIKE_SHAPES,
- Field,
- ModelField,
- ModelPrivateAttr,
- PrivateAttr,
- Undefined,
- is_finalvar_with_default_val,
- )
- from pydantic.v1.json import custom_pydantic_encoder, pydantic_encoder
- from pydantic.v1.parse import Protocol, load_file, load_str_bytes
- from pydantic.v1.schema import default_ref_template, model_schema
- from pydantic.v1.types import PyObject, StrBytes
- from pydantic.v1.typing import (
- AnyCallable,
- get_args,
- get_origin,
- is_classvar,
- is_namedtuple,
- is_union,
- resolve_annotations,
- update_model_forward_refs,
- )
- from pydantic.v1.utils import (
- DUNDER_ATTRIBUTES,
- ROOT_KEY,
- ClassAttribute,
- GetterDict,
- Representation,
- ValueItems,
- generate_model_signature,
- is_valid_field,
- is_valid_private_name,
- lenient_issubclass,
- sequence_like,
- smart_deepcopy,
- unique_list,
- validate_field_name,
- )
-
- if TYPE_CHECKING:
- from inspect import Signature
-
- from pydantic.v1.class_validators import ValidatorListDict
- from pydantic.v1.types import ModelOrDc
- from pydantic.v1.typing import (
- AbstractSetIntStr,
- AnyClassMethod,
- CallableGenerator,
- DictAny,
- DictStrAny,
- MappingIntStrAny,
- ReprArgs,
- SetStr,
- TupleGenerator,
- )
-
- Model = TypeVar('Model', bound='BaseModel')
-
- __all__ = 'BaseModel', 'create_model', 'validate_model'
-
- _T = TypeVar('_T')
-
-
- def validate_custom_root_type(fields: Dict[str, ModelField]) -> None:
- if len(fields) > 1:
- raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields')
-
-
- def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]:
- def hash_function(self_: Any) -> int:
- return hash(self_.__class__) + hash(tuple(self_.__dict__.values()))
-
- return hash_function if frozen else None
-
-
- # If a field is of type `Callable`, its default value should be a function and cannot to ignored.
- ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod)
- # When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model
- UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES
- # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra
- # (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's
- # safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for
- # the `BaseModel` class, since that's defined immediately after the metaclass.
- _is_base_model_class_defined = False
-
-
- @dataclass_transform(kw_only_default=True, field_specifiers=(Field,))
- class ModelMetaclass(ABCMeta):
- @no_type_check # noqa C901
- def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901
- fields: Dict[str, ModelField] = {}
- config = BaseConfig
- validators: 'ValidatorListDict' = {}
-
- pre_root_validators, post_root_validators = [], []
- private_attributes: Dict[str, ModelPrivateAttr] = {}
- base_private_attributes: Dict[str, ModelPrivateAttr] = {}
- slots: SetStr = namespace.get('__slots__', ())
- slots = {slots} if isinstance(slots, str) else set(slots)
- class_vars: SetStr = set()
- hash_func: Optional[Callable[[Any], int]] = None
-
- for base in reversed(bases):
- if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel:
- fields.update(smart_deepcopy(base.__fields__))
- config = inherit_config(base.__config__, config)
- validators = inherit_validators(base.__validators__, validators)
- pre_root_validators += base.__pre_root_validators__
- post_root_validators += base.__post_root_validators__
- base_private_attributes.update(base.__private_attributes__)
- class_vars.update(base.__class_vars__)
- hash_func = base.__hash__
-
- resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True)
- allowed_config_kwargs: SetStr = {
- key
- for key in dir(config)
- if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes
- }
- config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs}
- config_from_namespace = namespace.get('Config')
- if config_kwargs and config_from_namespace:
- raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs')
- config = inherit_config(config_from_namespace, config, **config_kwargs)
-
- validators = inherit_validators(extract_validators(namespace), validators)
- vg = ValidatorGroup(validators)
-
- for f in fields.values():
- f.set_config(config)
- extra_validators = vg.get_validators(f.name)
- if extra_validators:
- f.class_validators.update(extra_validators)
- # re-run prepare to add extra validators
- f.populate_validators()
-
- prepare_config(config, name)
-
- untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES
-
- def is_untouched(v: Any) -> bool:
- return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method'
-
- if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'):
- annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None))
- # annotation only fields need to come first in fields
- for ann_name, ann_type in annotations.items():
- if is_classvar(ann_type):
- class_vars.add(ann_name)
- elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)):
- class_vars.add(ann_name)
- elif is_valid_field(ann_name):
- validate_field_name(bases, ann_name)
- value = namespace.get(ann_name, Undefined)
- allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,)
- if (
- is_untouched(value)
- and ann_type != PyObject
- and not any(
- lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types
- )
- ):
- continue
- fields[ann_name] = ModelField.infer(
- name=ann_name,
- value=value,
- annotation=ann_type,
- class_validators=vg.get_validators(ann_name),
- config=config,
- )
- elif ann_name not in namespace and config.underscore_attrs_are_private:
- private_attributes[ann_name] = PrivateAttr()
-
- untouched_types = UNTOUCHED_TYPES + config.keep_untouched
- for var_name, value in namespace.items():
- can_be_changed = var_name not in class_vars and not is_untouched(value)
- if isinstance(value, ModelPrivateAttr):
- if not is_valid_private_name(var_name):
- raise NameError(
- f'Private attributes "{var_name}" must not be a valid field name; '
- f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"'
- )
- private_attributes[var_name] = value
- elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed:
- private_attributes[var_name] = PrivateAttr(default=value)
- elif is_valid_field(var_name) and var_name not in annotations and can_be_changed:
- validate_field_name(bases, var_name)
- inferred = ModelField.infer(
- name=var_name,
- value=value,
- annotation=annotations.get(var_name, Undefined),
- class_validators=vg.get_validators(var_name),
- config=config,
- )
- if var_name in fields:
- if lenient_issubclass(inferred.type_, fields[var_name].type_):
- inferred.type_ = fields[var_name].type_
- else:
- raise TypeError(
- f'The type of {name}.{var_name} differs from the new default value; '
- f'if you wish to change the type of this field, please use a type annotation'
- )
- fields[var_name] = inferred
-
- _custom_root_type = ROOT_KEY in fields
- if _custom_root_type:
- validate_custom_root_type(fields)
- vg.check_for_unused()
- if config.json_encoders:
- json_encoder = partial(custom_pydantic_encoder, config.json_encoders)
- else:
- json_encoder = pydantic_encoder
- pre_rv_new, post_rv_new = extract_root_validators(namespace)
-
- if hash_func is None:
- hash_func = generate_hash_function(config.frozen)
-
- exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'}
- new_namespace = {
- '__config__': config,
- '__fields__': fields,
- '__exclude_fields__': {
- name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None
- }
- or None,
- '__include_fields__': {
- name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None
- }
- or None,
- '__validators__': vg.validators,
- '__pre_root_validators__': unique_list(
- pre_root_validators + pre_rv_new,
- name_factory=lambda v: v.__name__,
- ),
- '__post_root_validators__': unique_list(
- post_root_validators + post_rv_new,
- name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__,
- ),
- '__schema_cache__': {},
- '__json_encoder__': staticmethod(json_encoder),
- '__custom_root_type__': _custom_root_type,
- '__private_attributes__': {**base_private_attributes, **private_attributes},
- '__slots__': slots | private_attributes.keys(),
- '__hash__': hash_func,
- '__class_vars__': class_vars,
- **{n: v for n, v in namespace.items() if n not in exclude_from_namespace},
- }
-
- cls = super().__new__(mcs, name, bases, new_namespace, **kwargs)
- # set __signature__ attr only for model class, but not for its instances
- cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config))
-
- if not _is_base_model_class_defined:
- # Cython does not understand the `if TYPE_CHECKING:` condition in the
- # BaseModel's body (where annotations are set), so clear them manually:
- getattr(cls, '__annotations__', {}).clear()
-
- if resolve_forward_refs:
- cls.__try_update_forward_refs__()
-
- # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
- # for attributes not in `new_namespace` (e.g. private attributes)
- for name, obj in namespace.items():
- if name not in new_namespace:
- set_name = getattr(obj, '__set_name__', None)
- if callable(set_name):
- set_name(cls, name)
-
- return cls
-
- def __instancecheck__(self, instance: Any) -> bool:
- """
- Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
-
- See #3829 and python/cpython#92810
- """
- return hasattr(instance, '__post_root_validators__') and super().__instancecheck__(instance)
-
-
- object_setattr = object.__setattr__
-
-
- class BaseModel(Representation, metaclass=ModelMetaclass):
- if TYPE_CHECKING:
- # populated by the metaclass, defined here to help IDEs only
- __fields__: ClassVar[Dict[str, ModelField]] = {}
- __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
- __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
- __validators__: ClassVar[Dict[str, AnyCallable]] = {}
- __pre_root_validators__: ClassVar[List[AnyCallable]]
- __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]]
- __config__: ClassVar[Type[BaseConfig]] = BaseConfig
- __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x
- __schema_cache__: ClassVar['DictAny'] = {}
- __custom_root_type__: ClassVar[bool] = False
- __signature__: ClassVar['Signature']
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]]
- __class_vars__: ClassVar[SetStr]
- __fields_set__: ClassVar[SetStr] = set()
-
- Config = BaseConfig
- __slots__ = ('__dict__', '__fields_set__')
- __doc__ = '' # Null out the Representation docstring
-
- def __init__(__pydantic_self__, **data: Any) -> None:
- """
- Create a new model by parsing and validating input data from keyword arguments.
-
- Raises ValidationError if the input data cannot be parsed to form a valid model.
- """
- # Uses something other than `self` the first arg to allow "self" as a settable attribute
- values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
- if validation_error:
- raise validation_error
- try:
- object_setattr(__pydantic_self__, '__dict__', values)
- except TypeError as e:
- raise TypeError(
- 'Model values must be a dict; you may not have returned a dictionary from a root validator'
- ) from e
- object_setattr(__pydantic_self__, '__fields_set__', fields_set)
- __pydantic_self__._init_private_attributes()
-
- @no_type_check
- def __setattr__(self, name, value): # noqa: C901 (ignore complexity)
- if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES:
- return object_setattr(self, name, value)
-
- if self.__config__.extra is not Extra.allow and name not in self.__fields__:
- raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"')
- elif not self.__config__.allow_mutation or self.__config__.frozen:
- raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment')
- elif name in self.__fields__ and self.__fields__[name].final:
- raise TypeError(
- f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment'
- )
- elif self.__config__.validate_assignment:
- new_values = {**self.__dict__, name: value}
-
- for validator in self.__pre_root_validators__:
- try:
- new_values = validator(self.__class__, new_values)
- except (ValueError, TypeError, AssertionError) as exc:
- raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__)
-
- known_field = self.__fields__.get(name, None)
- if known_field:
- # We want to
- # - make sure validators are called without the current value for this field inside `values`
- # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts)
- # - keep the order of the fields
- if not known_field.field_info.allow_mutation:
- raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned')
- dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name}
- value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__)
- if error_:
- raise ValidationError([error_], self.__class__)
- else:
- new_values[name] = value
-
- errors = []
- for skip_on_failure, validator in self.__post_root_validators__:
- if skip_on_failure and errors:
- continue
- try:
- new_values = validator(self.__class__, new_values)
- except (ValueError, TypeError, AssertionError) as exc:
- errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
- if errors:
- raise ValidationError(errors, self.__class__)
-
- # update the whole __dict__ as other values than just `value`
- # may be changed (e.g. with `root_validator`)
- object_setattr(self, '__dict__', new_values)
- else:
- self.__dict__[name] = value
-
- self.__fields_set__.add(name)
-
- def __getstate__(self) -> 'DictAny':
- private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__)
- return {
- '__dict__': self.__dict__,
- '__fields_set__': self.__fields_set__,
- '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined},
- }
-
- def __setstate__(self, state: 'DictAny') -> None:
- object_setattr(self, '__dict__', state['__dict__'])
- object_setattr(self, '__fields_set__', state['__fields_set__'])
- for name, value in state.get('__private_attribute_values__', {}).items():
- object_setattr(self, name, value)
-
- def _init_private_attributes(self) -> None:
- for name, private_attr in self.__private_attributes__.items():
- default = private_attr.get_default()
- if default is not Undefined:
- object_setattr(self, name, default)
-
- def dict(
- self,
- *,
- include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- by_alias: bool = False,
- skip_defaults: Optional[bool] = None,
- exclude_unset: bool = False,
- exclude_defaults: bool = False,
- exclude_none: bool = False,
- ) -> 'DictStrAny':
- """
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
- """
- if skip_defaults is not None:
- warnings.warn(
- f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
- DeprecationWarning,
- )
- exclude_unset = skip_defaults
-
- return dict(
- self._iter(
- to_dict=True,
- by_alias=by_alias,
- include=include,
- exclude=exclude,
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- exclude_none=exclude_none,
- )
- )
-
- def json(
- self,
- *,
- include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- by_alias: bool = False,
- skip_defaults: Optional[bool] = None,
- exclude_unset: bool = False,
- exclude_defaults: bool = False,
- exclude_none: bool = False,
- encoder: Optional[Callable[[Any], Any]] = None,
- models_as_dict: bool = True,
- **dumps_kwargs: Any,
- ) -> str:
- """
- Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
-
- `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.
- """
- if skip_defaults is not None:
- warnings.warn(
- f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
- DeprecationWarning,
- )
- exclude_unset = skip_defaults
- encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
-
- # We don't directly call `self.dict()`, which does exactly this with `to_dict=True`
- # because we want to be able to keep raw `BaseModel` instances and not as `dict`.
- # This allows users to write custom JSON encoders for given `BaseModel` classes.
- data = dict(
- self._iter(
- to_dict=models_as_dict,
- by_alias=by_alias,
- include=include,
- exclude=exclude,
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- exclude_none=exclude_none,
- )
- )
- if self.__custom_root_type__:
- data = data[ROOT_KEY]
- return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)
-
- @classmethod
- def _enforce_dict_if_root(cls, obj: Any) -> Any:
- if cls.__custom_root_type__ and (
- not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY})
- and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY})
- or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES
- ):
- return {ROOT_KEY: obj}
- else:
- return obj
-
- @classmethod
- def parse_obj(cls: Type['Model'], obj: Any) -> 'Model':
- obj = cls._enforce_dict_if_root(obj)
- if not isinstance(obj, dict):
- try:
- obj = dict(obj)
- except (TypeError, ValueError) as e:
- exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}')
- raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e
- return cls(**obj)
-
- @classmethod
- def parse_raw(
- cls: Type['Model'],
- b: StrBytes,
- *,
- content_type: str = None,
- encoding: str = 'utf8',
- proto: Protocol = None,
- allow_pickle: bool = False,
- ) -> 'Model':
- try:
- obj = load_str_bytes(
- b,
- proto=proto,
- content_type=content_type,
- encoding=encoding,
- allow_pickle=allow_pickle,
- json_loads=cls.__config__.json_loads,
- )
- except (ValueError, TypeError, UnicodeDecodeError) as e:
- raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls)
- return cls.parse_obj(obj)
-
- @classmethod
- def parse_file(
- cls: Type['Model'],
- path: Union[str, Path],
- *,
- content_type: str = None,
- encoding: str = 'utf8',
- proto: Protocol = None,
- allow_pickle: bool = False,
- ) -> 'Model':
- obj = load_file(
- path,
- proto=proto,
- content_type=content_type,
- encoding=encoding,
- allow_pickle=allow_pickle,
- json_loads=cls.__config__.json_loads,
- )
- return cls.parse_obj(obj)
-
- @classmethod
- def from_orm(cls: Type['Model'], obj: Any) -> 'Model':
- if not cls.__config__.orm_mode:
- raise ConfigError('You must have the config attribute orm_mode=True to use from_orm')
- obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj)
- m = cls.__new__(cls)
- values, fields_set, validation_error = validate_model(cls, obj)
- if validation_error:
- raise validation_error
- object_setattr(m, '__dict__', values)
- object_setattr(m, '__fields_set__', fields_set)
- m._init_private_attributes()
- return m
-
- @classmethod
- def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model':
- """
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
- Default values are respected, but no other validation is performed.
- Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
- """
- m = cls.__new__(cls)
- fields_values: Dict[str, Any] = {}
- for name, field in cls.__fields__.items():
- if field.alt_alias and field.alias in values:
- fields_values[name] = values[field.alias]
- elif name in values:
- fields_values[name] = values[name]
- elif not field.required:
- fields_values[name] = field.get_default()
- fields_values.update(values)
- object_setattr(m, '__dict__', fields_values)
- if _fields_set is None:
- _fields_set = set(values.keys())
- object_setattr(m, '__fields_set__', _fields_set)
- m._init_private_attributes()
- return m
-
- def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model':
- if deep:
- # chances of having empty dict here are quite low for using smart_deepcopy
- values = deepcopy(values)
-
- cls = self.__class__
- m = cls.__new__(cls)
- object_setattr(m, '__dict__', values)
- object_setattr(m, '__fields_set__', fields_set)
- for name in self.__private_attributes__:
- value = getattr(self, name, Undefined)
- if value is not Undefined:
- if deep:
- value = deepcopy(value)
- object_setattr(m, name, value)
-
- return m
-
- def copy(
- self: 'Model',
- *,
- include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- update: Optional['DictStrAny'] = None,
- deep: bool = False,
- ) -> 'Model':
- """
- Duplicate a model, optionally choose which fields to include, exclude and change.
-
- :param include: fields to include in new model
- :param exclude: fields to exclude from new model, as with values this takes precedence over include
- :param update: values to change/add in the new model. Note: the data is not validated before creating
- the new model: you should trust this data
- :param deep: set to `True` to make a deep copy of the model
- :return: new model instance
- """
-
- values = dict(
- self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False),
- **(update or {}),
- )
-
- # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg
- if update:
- fields_set = self.__fields_set__ | update.keys()
- else:
- fields_set = set(self.__fields_set__)
-
- return self._copy_and_set_values(values, fields_set, deep=deep)
-
- @classmethod
- def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny':
- cached = cls.__schema_cache__.get((by_alias, ref_template))
- if cached is not None:
- return cached
- s = model_schema(cls, by_alias=by_alias, ref_template=ref_template)
- cls.__schema_cache__[(by_alias, ref_template)] = s
- return s
-
- @classmethod
- def schema_json(
- cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any
- ) -> str:
- from pydantic.v1.json import pydantic_encoder
-
- return cls.__config__.json_dumps(
- cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs
- )
-
- @classmethod
- def __get_validators__(cls) -> 'CallableGenerator':
- yield cls.validate
-
- @classmethod
- def validate(cls: Type['Model'], value: Any) -> 'Model':
- if isinstance(value, cls):
- copy_on_model_validation = cls.__config__.copy_on_model_validation
- # whether to deep or shallow copy the model on validation, None means do not copy
- deep_copy: Optional[bool] = None
- if copy_on_model_validation not in {'deep', 'shallow', 'none'}:
- # Warn about deprecated behavior
- warnings.warn(
- "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning
- )
- if copy_on_model_validation:
- deep_copy = False
-
- if copy_on_model_validation == 'shallow':
- # shallow copy
- deep_copy = False
- elif copy_on_model_validation == 'deep':
- # deep copy
- deep_copy = True
-
- if deep_copy is None:
- return value
- else:
- return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy)
-
- value = cls._enforce_dict_if_root(value)
-
- if isinstance(value, dict):
- return cls(**value)
- elif cls.__config__.orm_mode:
- return cls.from_orm(value)
- else:
- try:
- value_as_dict = dict(value)
- except (TypeError, ValueError) as e:
- raise DictError() from e
- return cls(**value_as_dict)
-
- @classmethod
- def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict:
- if isinstance(obj, GetterDict):
- return obj
- return cls.__config__.getter_dict(obj)
-
- @classmethod
- @no_type_check
- def _get_value(
- cls,
- v: Any,
- to_dict: bool,
- by_alias: bool,
- include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
- exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
- exclude_unset: bool,
- exclude_defaults: bool,
- exclude_none: bool,
- ) -> Any:
- if isinstance(v, BaseModel):
- if to_dict:
- v_dict = v.dict(
- by_alias=by_alias,
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- include=include,
- exclude=exclude,
- exclude_none=exclude_none,
- )
- if ROOT_KEY in v_dict:
- return v_dict[ROOT_KEY]
- return v_dict
- else:
- return v.copy(include=include, exclude=exclude)
-
- value_exclude = ValueItems(v, exclude) if exclude else None
- value_include = ValueItems(v, include) if include else None
-
- if isinstance(v, dict):
- return {
- k_: cls._get_value(
- v_,
- to_dict=to_dict,
- by_alias=by_alias,
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- include=value_include and value_include.for_element(k_),
- exclude=value_exclude and value_exclude.for_element(k_),
- exclude_none=exclude_none,
- )
- for k_, v_ in v.items()
- if (not value_exclude or not value_exclude.is_excluded(k_))
- and (not value_include or value_include.is_included(k_))
- }
-
- elif sequence_like(v):
- seq_args = (
- cls._get_value(
- v_,
- to_dict=to_dict,
- by_alias=by_alias,
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- include=value_include and value_include.for_element(i),
- exclude=value_exclude and value_exclude.for_element(i),
- exclude_none=exclude_none,
- )
- for i, v_ in enumerate(v)
- if (not value_exclude or not value_exclude.is_excluded(i))
- and (not value_include or value_include.is_included(i))
- )
-
- return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args)
-
- elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False):
- return v.value
-
- else:
- return v
-
- @classmethod
- def __try_update_forward_refs__(cls, **localns: Any) -> None:
- """
- Same as update_forward_refs but will not raise exception
- when forward references are not defined.
- """
- update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,))
-
- @classmethod
- def update_forward_refs(cls, **localns: Any) -> None:
- """
- Try to update ForwardRefs on fields based on this Model, globalns and localns.
- """
- update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns)
-
- def __iter__(self) -> 'TupleGenerator':
- """
- so `dict(model)` works
- """
- yield from self.__dict__.items()
-
- def _iter(
- self,
- to_dict: bool = False,
- by_alias: bool = False,
- include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
- exclude_unset: bool = False,
- exclude_defaults: bool = False,
- exclude_none: bool = False,
- ) -> 'TupleGenerator':
- # Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
- # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
- if exclude is not None or self.__exclude_fields__ is not None:
- exclude = ValueItems.merge(self.__exclude_fields__, exclude)
-
- if include is not None or self.__include_fields__ is not None:
- include = ValueItems.merge(self.__include_fields__, include, intersect=True)
-
- allowed_keys = self._calculate_keys(
- include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore
- )
- if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
- # huge boost for plain _iter()
- yield from self.__dict__.items()
- return
-
- value_exclude = ValueItems(self, exclude) if exclude is not None else None
- value_include = ValueItems(self, include) if include is not None else None
-
- for field_key, v in self.__dict__.items():
- if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
- continue
-
- if exclude_defaults:
- model_field = self.__fields__.get(field_key)
- if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v:
- continue
-
- if by_alias and field_key in self.__fields__:
- dict_key = self.__fields__[field_key].alias
- else:
- dict_key = field_key
-
- if to_dict or value_include or value_exclude:
- v = self._get_value(
- v,
- to_dict=to_dict,
- by_alias=by_alias,
- include=value_include and value_include.for_element(field_key),
- exclude=value_exclude and value_exclude.for_element(field_key),
- exclude_unset=exclude_unset,
- exclude_defaults=exclude_defaults,
- exclude_none=exclude_none,
- )
- yield dict_key, v
-
- def _calculate_keys(
- self,
- include: Optional['MappingIntStrAny'],
- exclude: Optional['MappingIntStrAny'],
- exclude_unset: bool,
- update: Optional['DictStrAny'] = None,
- ) -> Optional[AbstractSet[str]]:
- if include is None and exclude is None and exclude_unset is False:
- return None
-
- keys: AbstractSet[str]
- if exclude_unset:
- keys = self.__fields_set__.copy()
- else:
- keys = self.__dict__.keys()
-
- if include is not None:
- keys &= include.keys()
-
- if update:
- keys -= update.keys()
-
- if exclude:
- keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)}
-
- return keys
-
- def __eq__(self, other: Any) -> bool:
- if isinstance(other, BaseModel):
- return self.dict() == other.dict()
- else:
- return self.dict() == other
-
- def __repr_args__(self) -> 'ReprArgs':
- return [
- (k, v)
- for k, v in self.__dict__.items()
- if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr)
- ]
-
-
- _is_base_model_class_defined = True
-
-
- @overload
- def create_model(
- __model_name: str,
- *,
- __config__: Optional[Type[BaseConfig]] = None,
- __base__: None = None,
- __module__: str = __name__,
- __validators__: Dict[str, 'AnyClassMethod'] = None,
- __cls_kwargs__: Dict[str, Any] = None,
- **field_definitions: Any,
- ) -> Type['BaseModel']:
- ...
-
-
- @overload
- def create_model(
- __model_name: str,
- *,
- __config__: Optional[Type[BaseConfig]] = None,
- __base__: Union[Type['Model'], Tuple[Type['Model'], ...]],
- __module__: str = __name__,
- __validators__: Dict[str, 'AnyClassMethod'] = None,
- __cls_kwargs__: Dict[str, Any] = None,
- **field_definitions: Any,
- ) -> Type['Model']:
- ...
-
-
- def create_model(
- __model_name: str,
- *,
- __config__: Optional[Type[BaseConfig]] = None,
- __base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None,
- __module__: str = __name__,
- __validators__: Dict[str, 'AnyClassMethod'] = None,
- __cls_kwargs__: Dict[str, Any] = None,
- __slots__: Optional[Tuple[str, ...]] = None,
- **field_definitions: Any,
- ) -> Type['Model']:
- """
- Dynamically create a model.
- :param __model_name: name of the created model
- :param __config__: config class to use for the new model
- :param __base__: base class for the new model to inherit from
- :param __module__: module of the created model
- :param __validators__: a dict of method names and @validator class methods
- :param __cls_kwargs__: a dict for class creation
- :param __slots__: Deprecated, `__slots__` should not be passed to `create_model`
- :param field_definitions: fields of the model (or extra fields if a base is supplied)
- in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g.
- `foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format
- `<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g.
- `foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or
- `foo=(str, FieldInfo(title='Foo'))`
- """
- if __slots__ is not None:
- # __slots__ will be ignored from here on
- warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)
-
- if __base__ is not None:
- if __config__ is not None:
- raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together')
- if not isinstance(__base__, tuple):
- __base__ = (__base__,)
- else:
- __base__ = (cast(Type['Model'], BaseModel),)
-
- __cls_kwargs__ = __cls_kwargs__ or {}
-
- fields = {}
- annotations = {}
-
- for f_name, f_def in field_definitions.items():
- if not is_valid_field(f_name):
- warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
- if isinstance(f_def, tuple):
- try:
- f_annotation, f_value = f_def
- except ValueError as e:
- raise ConfigError(
- 'field definitions should either be a tuple of (<type>, <default>) or just a '
- 'default value, unfortunately this means tuples as '
- 'default values are not allowed'
- ) from e
- else:
- f_annotation, f_value = None, f_def
-
- if f_annotation:
- annotations[f_name] = f_annotation
- fields[f_name] = f_value
-
- namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__}
- if __validators__:
- namespace.update(__validators__)
- namespace.update(fields)
- if __config__:
- namespace['Config'] = inherit_config(__config__, BaseConfig)
- resolved_bases = resolve_bases(__base__)
- meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__)
- if resolved_bases is not __base__:
- ns['__orig_bases__'] = __base__
- namespace.update(ns)
- return meta(__model_name, resolved_bases, namespace, **kwds)
-
-
- _missing = object()
-
-
- def validate_model( # noqa: C901 (ignore complexity)
- model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None
- ) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]:
- """
- validate data against a model.
- """
- values = {}
- errors = []
- # input_data names, possibly alias
- names_used = set()
- # field names, never aliases
- fields_set = set()
- config = model.__config__
- check_extra = config.extra is not Extra.ignore
- cls_ = cls or model
-
- for validator in model.__pre_root_validators__:
- try:
- input_data = validator(cls_, input_data)
- except (ValueError, TypeError, AssertionError) as exc:
- return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_)
-
- for name, field in model.__fields__.items():
- value = input_data.get(field.alias, _missing)
- using_name = False
- if value is _missing and config.allow_population_by_field_name and field.alt_alias:
- value = input_data.get(field.name, _missing)
- using_name = True
-
- if value is _missing:
- if field.required:
- errors.append(ErrorWrapper(MissingError(), loc=field.alias))
- continue
-
- value = field.get_default()
-
- if not config.validate_all and not field.validate_always:
- values[name] = value
- continue
- else:
- fields_set.add(name)
- if check_extra:
- names_used.add(field.name if using_name else field.alias)
-
- v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_)
- if isinstance(errors_, ErrorWrapper):
- errors.append(errors_)
- elif isinstance(errors_, list):
- errors.extend(errors_)
- else:
- values[name] = v_
-
- if check_extra:
- if isinstance(input_data, GetterDict):
- extra = input_data.extra_keys() - names_used
- else:
- extra = input_data.keys() - names_used
- if extra:
- fields_set |= extra
- if config.extra is Extra.allow:
- for f in extra:
- values[f] = input_data[f]
- else:
- for f in sorted(extra):
- errors.append(ErrorWrapper(ExtraError(), loc=f))
-
- for skip_on_failure, validator in model.__post_root_validators__:
- if skip_on_failure and errors:
- continue
- try:
- values = validator(cls_, values)
- except (ValueError, TypeError, AssertionError) as exc:
- errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
-
- if errors:
- return values, fields_set, ValidationError(errors, cls_)
- else:
- return values, fields_set, None
|